Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T00:58:45.308Z Has data issue: false hasContentIssue false

Workshop no. 7. Digestion in haematophagous arthropods

Published online by Cambridge University Press:  19 November 2018

Extract

In vector-borne diseases it is generally the vector which determines the success of disease transmission and efforts to limit the incidence of such diseases generally involve control of the vector. The very nature of their feeding habits renders haematophagous arthropods prime candidates for disease transmission and a great deal is now known of the biology of the most important vectors. Nevertheless, there are many areas in which our knowledge is incomplete or about which conflieting views exist.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aschner, M. (1931). Die Bakterienflora der Pupiparon (Diptera). Eine Symbiosestudie an blutsaugenden Insekten. Zeitschrift für Morphologie und Ökologie der Tiere 20, 358442.Google Scholar
Aschner, M. (1932). Experimentelle Untersuchungen über die Symbiose der Kleiderlaus. Naturwissenschaften 20, 501505.Google Scholar
Aschner, M. (1934). Studies on the symbiosis of the body louse. I. Elimination of the symbionts by centrifugation of the eggs. Parasitology 26, 309314.Google Scholar
Aschner, M. (1946). The symbionts of Kucampsipoila aegyptica Meg. (Diptera, Pupipara: Nycteribiidae). Bulletin de la Sociiti Fouad ler d'entomologie 30.Google Scholar
Aschner, M. & Ries, E. (1933). Das Verhalten der Kleiderlaus beim Ausschalten der Symbionten. Zeitschrift für Morphologie und Ökologie der Tiere 26, 529590.Google Scholar
Ashford, K. W., Brav, M. A., Hutchinson, H. P. & Bray, K. S. (1973). Tho epidemiology of cutaneoua leishmaniasis in Ethiopia. Transactions of the Royal Society of Tropicul Mcdicine and Hygiene, 67, 568601.Google Scholar
Auden, D. (1974). Studies on the development of Jihodnius prolixus and the effects of its symbiote Nocardia rhodnii. Journal of Medical Entomology 11, 0871.Google Scholar
Bacot, A. V. Sc Martin, C. J. (1914). Observations on the meehanism of tho tranamission of i>lague by fleas. Journal of Hygiene, Plague Supplement Iii, pp. 423439.lague+by+fleas.+Journal+of+Hygiene,+Plague+Supplement+Iii,+pp.+423–439.>Google Scholar
Baines, S. (1956). The role of the symbiotie bacteriain the nutritionof Rhodnius prolixus (Hemiptera). Journal of Experimental Biology 33, 533541.Google Scholar
Baker, J. R. & Robertson, D. H. H. (1957). An experiment on the infectivity to Glossina morsitans of a strain of Trypanosoma rhodesiense and of a strain of Trypanosoma brucei witfasorae observations on the longevity of infected flies. Annais of Tropical Medicine and Parasilology 51, 121135.Google Scholar
Barile, M. F. (1979). Mycoplasmatissue cell interactions. In The Mycopla-smaj, vol. 2 (ed. Tully, J. G. and Whitcomb, R. F.), pp. 425474. Aoademic Press. Google Scholar
Barton-Browne, L. (1975). Regulatory mechanisms in insect feeding. Advances in Insect Physiology 11, 1116.Google Scholar
Baudisch, K. (1958). Beitrüge zur Zytologie und Embryologie einiger Insektensymbiosen. Zeitschrift für Motphologie und Ökologie der Tiere 47, 436488.Google Scholar
Beach, R. (1979). Mosquitoes: biting behaviour inhibited by eedysone. Science 205, 829831.Google Scholar
Beckemeyeh, K. F. & Lea, A. O. (1980). Induction of follicle Separation by physiological amounts of ecdysterone. Science, N.Y. 209, 819821.Google Scholar
Bewig, F. R, Schwartz, W. (1956). Über die Physiologie der Symbiose bei eini en blutsaugenden Insekten. Archiv, für Mikrobiologie 24, 174208.Google Scholar
Bignell, D. E., Oskarsson, H. & Anderson, J. M. (1980). Colonization of the epithelial face of the peritrophic inoinbrane and the eetoperitrophic space by actinomycetes in a soil-feeding termite. Journal of Invertcbrate Pathology (in the Press).Google Scholar
Boatman, E. S. (1979). Morphology and ultrastructure of the mycoplasmatales. In The Mycoplasmas, vol. 1 (ed. Barile, M. F. and Razin, S.), pp. 63102. Academie Press. Google Scholar
BÖHrinoer, S. (1977). Digestion in the tsetse fly: an ultrastructural analysis of structure and function of the midgut epithelium in Glosina m. morsitans. Ph.D. dissertation, University of Basel.Google Scholar
BÖHringer, S. & Hecker, H. (1975). Quantitative ultrastructural investigation of the life-cyole of Trypanosoma brucei. A morphometric analysis. Journal of Prolozoology 22, 463467.Google Scholar
Brandt, C. R., Adano, M. J., & Spence, K. D. (1978). The peritrophic membrane: ultrastructural analysis and function as a mechanical barrier to microbial infection in Orgyria pseudotsugata. Journal of Inrertebrate Pathology 32, 1224.Google Scholar
Brecher, G. & Wioolesworth, V. B. (1944). The transmission of Actinomyces rhodnii Erkison in Rhodnius prolixus Stal. (Hemiptera) and its influence on the growth of the host. Parasitology 35, 220224.Google Scholar
Briegel, H. (1969). Untersuchungen zum Aminosäuren-und Proteinstoffwechsel während der autogenen und anautogenen Eireifung von Culex pipiens. Journal of Insect Physiology 15, 11371166.Google Scholar
Briegel, H. (1975). Excretion of proteolytic enzymes by Aedes aegypti after a blood meal. Journal of Insect Physiology 21, 16811684.Google Scholar
Brieoel, H. (1981). Reversion of age-related changes in intestinal tryptic activity in tho mosquito Aedes aegypti. Manuseript submitted for publication.Google Scholar
Brieqel, H. & Lea, A. O. (1975). Relationship between protein and proteolytic activity in the midgut of mosquitoes.Journal of Insect Physiology 21, 15971604.Google Scholar
Brieoel, H. & Lea, A. O. (1979). Influence of the endocrine System on tryptic activity in females Aedes aegypti. Journal of Insect Physiology 25, 227230.Google Scholar
BÜChner, P. (1965). Emlosymbiosis of Animnls with Plant Microorganisms. New York: Interscience I'ublishs.Google Scholar
Bursell, E. (1975). Substrates of oxidative metabolism in Dipteran flight muscle. Comparative Biochemisiry andPhysiology 52 B, 235238.Google Scholar
Bursell, E. (1981). The futuro of tsetso biology. In Irwect Biology in the Future (eds. M. Locke and D-Smith). NewYork: Academio Press (in the Press).Google Scholar
Bursell, E. & Taylor, P. (1980). An energy budget for Glossina. Bulletin of Entomological Research 70, 187196.Google Scholar
Chuno, H. L., Feno, L. C. & Feng, S. L. (1951). Observations concerning the successful transmission °f kala-azar in North China by the bites of naturally infected Phlcbotomus chinensis. Peking Natural History Bulletin 19, 302326.Google Scholar
Clements, A. N. (1956). Hormonal control of ovary development in mosquitoes. Journal of Experimental Biology 33, 211223.Google Scholar
Cole, S. J. & Gillett, J. D. (1978). Tho influence of the brain hormone on retention of blood in the midgut of the mosquito Aedes aegypti (L.). Ii. Early elimination following removal of the medial neurosecretory cellsof the brain. Proceedings of the Royal Society of London B, 202, 307311.Google Scholar
Cole, S. J. & Gillett, J. D. (1979). The influence of the brain hormone on retention of blood in the mid.gut of tho moscjuito Aedes aegypti (L.). Iii. The involvement of the ovaries and eedysone. Proceedings of the Royal Society of London B 205, 411422.Google Scholar
Dadd, R. H. (1975). Alkalinity withinthe midgut of mosquito larvae with alkaline-active digestivo enzymes. Journal of Insect Physiology 21, 18471853.Google Scholar
Meillon, B., Thorp, J. & Hardy, F. (1946). The relationship between ectoparasite and host. 1. The development of Cimex lectularius and Ornithodorus moubata on riboflavin deficient rats. South African Journal of Medical Science 12, 111116.Google Scholar
De Meillon, B. & Goldberg, L. (1947). Preliminary studies on the nutritional requiroments of the bed bug (Cimex lectularius L.) and the tick OrnUhodorus moubata Murray. Journal of Experimental Biology, 21, 4153.Google Scholar
Denham, D. A. & Mcgreevy, P. B. (1977). Brugan filariasis: epidemiological and experimental studies. Advances in Parasitology 15. 243309.Google Scholar
Detinova, T. S. (1945). On the influenee of glands of internal secretion upon the ripening of the gonads and the imaginal diapause in Anopheles maculipennis. (In Kussian; English sumraary.) Zoologicheskii Zhurnal 24, 291298.Google Scholar
Detra, R. L. & Rosomer, W. S. (1979). Permeability of Aedes aegypti larval peritrophic membrane to proteolytic enzyme. Mosquito News 39, 582585.Google Scholar
Ellis, D. S. & Evans, D. A. (1977). Passage of Trypanosoma brucei rhodesiense through the peritrophic membrane of Glossina morsitans morsitans. Nature, London, 267,834—835.Google Scholar
Evans, C. L. (1956). Principles of human physiology. London: J. and A. Churchill.Google Scholar
Fallon, A. M., Hagedorn, H. H., Wvatt, G. R. & Laufer, H. (1974). Activation of vitellogenin synthesis in the mosquito Aedes aegypti by ecdysone. Journal of Insect Physiology 20, 18151823.Google Scholar
Ford, W. C. L. & Bowman, I. B. R. (1973). Metabolism of proline by the culture midgut form of Trypanosoma rhodesiense. Transactions of the Royal Society of Tropical Medicine and Hygiene 67, 257.Google Scholar
Fraenkel, G. (1952). The role of symbionts as sources of vitaminsnnd growth factors for their insect hosts. Tijdschrifl voor Entomologie 95, 183196.Google Scholar
Freeman, J. C. (1973). The penetration of the peritrophic membrane of the tsetso fly by trypanosomes Ada tropica 30, 347355.Google Scholar
Freyvogel, T. A. & Jaquet, C. (1965). The prerequisites for the formation of the peritrophic membrane in Culicidae females. Acta Tropica 22, 148154.Google Scholar
Friend, W. G. & Smtih, J. J. B. (1977). Factors affecting feeding by bloodsuckinginsects. Annual Review of Entomology 22, 309331.Google Scholar
Fuchs, M. S. & Fong, W. F. (1976). Inhibition of blood digestion of a-amanitinand actinomycinD and its effect on ovarian development in Aedes aegypti. Journal of Insect Physiology 22, 465472.Google Scholar
Fuchs, M. S., Sunderland, B. R., & Kang, Suk-Hee (1980). In vivo induction of ovarian development in Aedes atropalpus by a head extract from Aedes aegypti. International Journal of Invertebrate Reprodudion 2, 121129.Google Scholar
Fujishita, M. & Ishizaki, H. (1980). Gut purgerhythin in Samia cynthia ricini. Ii. Relation to ecdysone secretion. Abstracts of the International Congress of Entomology, Kyoto, 16, 87.Google Scholar
Gee, J., Whitehead, D. L. & Koolman, J. (1977). Steroitls stimulate secretionby insect Malpighian tubules. Nature, 269, 238239.Google Scholar
Geigy, R. & Kauffmann, M. (1973). Sleeping sickness survey in tho Serengeti area (Tunzania) 1971. Examination of large mammalsfor trypanosomes. Ada tropica 30, 1223.Google Scholar
Geioy, R., Halff, L. A. & Kocher, V. (1953). Untersuchungen über die physiologischen Beziehungen zwischen einem Überträger der Chagas-Krankheit Triatoma infestansund dessen Darmsymbionten. Schweizer medizinische Wochenzeitschrift 39, 928930.Google Scholar
Gillett, J. D. (1955). Role of tho blood meal in A. aegypti. Report of the East African Virus Research Institute (1954-5), p. 24.Google Scholar
Gillett, J. D. (195(5). Initiation and promotion of ovarian development in the mosquito Aedes (Stegomyia) aegypti (Linnaeus). Annais of Tropical Meilicine and Parasitology 50, 375378.Google Scholar
Giixett, J. D. (1957). Variation in the time of release of the ovarian development hormono in Aedes aegypti. Nature 180,656—657.Google Scholar
Gillett, J. D. (1962). Contributions to the oviposition-cycleby the individual mosquitoeain a population. Journal of Insect Physiology 8, 665681.Google Scholar
Gillett, J. D. (1974). Direct and indireet influences of temperature on tha transmissionof parasitea from insects to man. In The Effects of Meieorological Factors upon Parasitcs (ed. Taylor, A. E. R. and Muller, R.), pp. 7995. Oxford: Blackwell Seientific Publications.Google Scholar
Gillett, J. D., Cole, S. J., & Reeves, D. (1975). Tho influenee of the brainhormone on retention of blood in the mid-gut of the mosquito Aedes aegypti (L.). Proceedings of the Royal Society of London B 190, 359367.Google Scholar
Gooding, R. H. (1966). Physiological aspects of digestion of the blood moal by Aedes aegypti (L.) and Culex fatigans Wiedemann. Journal of Medical Entomology 3, 53—60.Google Scholar
Gooding, R. H. (1973). The digestive proeesses of haematophagous insects. Iv. Secretion of trypsin by Aedes aegypti (Diptera: Culicidae). Canadian Entomologist 105, 599603.Google Scholar
Gooding, R. H. (1975). Digestive enzymes and their control in haematophagous arthropods.Acta Tropica 32, 96111.Google Scholar
Grace, T. D. (1962). Establishment of four strains of cellsfrom insect tissues grown in vitro. Nature 195, 788789.Google Scholar
Gumpert, J. (1962). Untersuchungen über die Symbiose von Tieren mit Pilzenund Bakterien.X. Die Symbiose der Triatomen. 2. Infektion symbiontenfreier Triatomenmit symbiontischen und saprophvtischen Mikroorganismen und gemeinsame Eigenschaften der symbiontischen Stamme. Zeitschrift für Allgemeine Mikrobiologie 2, 290302.Google Scholar
Gumpert, J. Rschwartz, W. (1063). Untersuchungen über die Symbiose von Tieren mit Pilzen und Bakterien. X. Die Symbiose der Triatomen. 3. Pantothensäurelieferung als Funktion der Symbionten.Zeitschrift für allgemeine Mikrobiologie 3, 114.Google Scholar
Gwadz, R. W., & Spielman, H. (1973). Corpus allatum control of ovarian development in Aedes aegypti. Journalof Inse-ct Physiology 19, 14411448.Google Scholar
Haddow, A. J., & Gillett, J. D. (1957). Observations on the oviposition cycle of Aedes (Slegomyia) aegypti (Linnaeus). Annais of Tropieal Mediane and Paraaitology 51, 159169.Google Scholar
Hagedorn, H. H. & Fallon, A. M. (1973). Ovarian eontrol of vitellogenin synthesisby the fat body in Aedes aegypti. Nature 244, 103105.Google Scholar
Hagedorn, H. H., Shapiro, J. P. & Hanaoka, K. (1979). Ovarian ecdysone secretions controlled by a brain hormone in an adult mosquito. Nature 282, 9294.Google Scholar
Harington, J. S. (1960). Studios on Rhodnius prolixus: growth and development of normal and sterile bugs, and the symbiotic relationship. Parasitology 50, 279286.Google Scholar
Hecker, H. & Burri, P. H. (1979). Gut epithelium of insects: a variable singlo layered epithelium. In Stereological methods. Vol. 1. Practical Methods for Biological Morphometry (ed. Weibel, E. R.), pp. 296301. Academie Press. Google Scholar
Hecker, H. & Rudin, W. (1979). Normal versus a-amanitin induced cellular dynamies of the midgut epithelium in fcmale Aedes aegypti L. (Insecta, Diptera) in response to blood feeding. European Journal of Cell Biology 19, 160167.Google Scholar
Hecker, H., Brvn, R., Reinhardt, C. & Burri, P. H. (1974). Morphometric analysis of tho midgut of femalo Aedes aegypti under various physiological conditions. Cell and Tissue Research 152, 31—49.Google Scholar
Hill, P., Campbell, J. A. & Petrie, I. A. (1976). Rhodus prolixus and its symbiotic actinomycete: a microbiological, physiological and behavioural study. Proceedings of the Royal Society London B, 194, 501525.Google Scholar
Hill, P., Saunders, D. S. & Campbell, J. A. (1973). The production of ‘symbiont-free’ Glossina morsitans and an associated loss of female fertility.Transactions of the Royal Society of Tropieal Medicine and Hygiene 67, 727728.Google Scholar
Hosoi, T. (1959). Identification of blood components which induce gorging of tho mosquito. Journal of Insect Physiology 3, 191218.Google Scholar
Hosoi, T., Uchida, K., Sato, S. & Matsumura, O. (1974). [Initiation of egg development in the mosquito Culex pipiens pallens, stimulated by diet amino aeids.] Journal of the College of Arts and Sciences, Chiba University B 8, 7391.Google Scholar
House, H. L. (1974). Insect nutrition. In The Physiology of Insecta (ed. Rockstein, Bf.), vol. v, pp. 1—62. Aeademie Press. Google Scholar
Huanq, Ch.-T. (1971). The interactions of Aedes aegypti (L.) trypsin with its two Inhibitors found in bovino serum. Insect Biochemistry, 1, 207227.Google Scholar
Javadian, E. & Macdonald, W. W. (1974). Tho effect of infection with Brugia pahangi and Dirofilaria repens on tho egg production of Aedes aegypti. Annais of Tropieal Medicine and Parasitology 65, 477481.Google Scholar
Jenni, L., Molyneux, D. H., Livesey, J. L. & Galun, R. (1980). Feeding behaviour of tsetse flies infected with Salivarian t rypanosomes. Nature 282, 383385.Google Scholar
Kaddu, J. B. & Mutinga, M. J. (1980). Trypanosoma (Js'annomonas) congolense in the anterior midgut colls of Glossina pallidipes. Annais of Tropieal Medicine and Parasitology 74, 255256.Google Scholar
Kelly, T. J. & Fuchs, M. S. (1980). In vivo induetion of ovarian development in decapitated Aedes utropalpus by physiological levels of 20-hydroxyecdysone. Journal of Experimental Zoology 213, 2532.Google Scholar
Kelly, T. J., Fuchs, M. S. & Kang, Suk-Hee (1981). Induetion of ovarian development in autogenous Aedes atropalpus by juvenile hormone and 20-hydroxyecdysone. International Journal of Invertebrate Reproduclion (in the Press).Google Scholar
Killick-Kendrick, R. (1979). The biology of Leishmania in phlebotomine sandnies. In Biology of Kinetoplaslida, vol. 2 (ed. Lumsden, W. H. R. and Evans, D. A.), pp. 395460. London: Aeademie Press. Google Scholar
Killick-Kendrick, R., Leaney, A. J., Ready, P. D. & Molyneux, D. H. (1977). Leishmania in phlebotomid sandflies. Iv. The transmission of Leishmania mexicana amazonensis by the bite of experimentally infected Lutzomyia longipalpis. Proceedings of the Royal Society of London B 196, 105115.Google Scholar
Klowden, M. J. & Lea, G. O. (1979). Humoral Inhibition of host-seeking in Aedes aegypti during ooeyte maturation. Journal of Insect Physiology 25, 231235.Google Scholar
Kolb, E. (1964). Körper-und Zellbestandteile: h) Vitamine. In Biochemisches Taschenbuch (ed. H. M. Rauen), part 2, 356358. Berlin: Springer-Verlag.Google Scholar
Lake, P. & Friend, W. G. (1968). The use of artificial diets to determine some of the effects of Noeardia rhodnii on the development of Rhodnius prolixus. Journal of Insect Physiology 14, 543562.Google Scholar
Lanqley, P. A. (1967). Experimental evidence for a hormonal control of digestion in tho tsetse fly Glossina morsitans Westwood. A study of tho larva, pupa and teneral adult fly. Journal of Insect Physiology 13, 19211931.Google Scholar
Lakham, S. M. & Godfbey, D. G. (1970). Isolation of salivarian trypanosomes from man and other mammals using Deae-cellulose. Experimental Parasitology 28, 521534.Google Scholar
Lauge, G. & Nishioka, R. S. (1977). Ultrastructural study of tho relations between Leptomonas oncopelti (Noguehi and Tilden), Protozoa Trypanosomatidae, and the rectal wall of adults of Oncopeltus jasciatus Dallas (Hemiptera Lygaeidae). Journal of Morphology 154, 291304.Google Scholar
Lea, A. O. (1967). The medial neurosecretory cells and egg maturation in mosquitoes. Journal of Instet Physiology 13, 419429.Google Scholar
Lea, A. O. (1972). Regulation of egg maturation in the mosquito by the neurosecretory System: tho role of the corpus cardiacum. General and Comparative Endoerinology (Supplement 3), pp. 602608.Google Scholar
Lea, A. O. (1975). The control of reproduetion by a blood meal: tho inosquito as a modelfor vector endoerinology. Acta tropica 32, 112115.Google Scholar
Leberre, R. (1967). Les membrane peritrophique chez les arthropodes. Leur röle dans la digestion et leur Intervention dans l'evolution d'organismes parasitaires. Cahier Orstom (Scries d'Entomologie Medicine et Parasitologie) 5, 147—204.Google Scholar
Lehane, M. (1975). Observations on the strueture and funetionof the gut in Stomoxys calcilrans (Insecta: Diptera). Ph.D. thesis, University of Leeds.Google Scholar
Levinson, H. Z. & Cohen, E. (1973). The aetion of overdosed biotin on reproduetion of the hiile beetle Dermestus maculatus. Journal of Insect Physiology 19, 551558.Google Scholar
Livesey, J. L., Molyneux, D. H. & Jenni, L. (1980). Mechanoreceptor-trypanosomo interaetions in the labrum of Glossina: fluid mechanics. Acta Tropica 37, 151161.Google Scholar
Loher, W. (1980). Temporal organization of reproduetivebehaviour in crickets,Abstracts of the International Congress of Entomology, Kyoto 16, 57.Google Scholar
Long, C. (ed.). (1961). Biochemists’ Handbook. Prineeton, New Jersey: D. van Nostrand.Google Scholar
Macgregor, M. E. (1931). The nutrition of adult mosquitoes: preliminary contribution.Transactions of the Royal Society of Tropical Medicine and Hygiene 24, 465472.Google Scholar
Masleb, E. P., Fuchs, M. S., Sage, B. & O'Connor, J. D. (1980). Endocrineregulation of ovarian development in the autogenous inosquito, Aedes atropalpus. General and Comparative Endoerinology 41, 250259.Google Scholar
Merceb, E. H. & Day, M. F. (1952). The fine strueture of the peritrophic meinbranos of certain insects. Biological Bulletin 103, 384394.Google Scholar
Mews, A. R., Langley, P. A., Pimley, R. W. & Flood, M. E. T. (1977). Large-scalo rearing of tsetse flies (Glossina spp.) in the absenco of a living host. Bulletin of entomological Research 67, 119128.Google Scholar
Moloo, S. K. (1976). Aspects of the nutrition of adult femaleGloss-ina morsitans during pregnancy. Journal of Insect Physiology 22, 563567.Google Scholar
Moloo, S. K. (1979). Tsetse vectors of trypanosomiases. Ilrad researeh report, pp.14-18.Google Scholar
Molyneux, D. H. (1977). Vector relationships in tho Trypanosomatidao. Advances inParasitology 15, 182.Google Scholar
Molyneux, D. H. (1980). Host-trypanosome interaetions in Glossina, Insect Science and its Applications 1, (in the Press).Google Scholar
Molyneux, D. H. & Jenni, L. (1981). Mcchanoreceptors, feeding behaviour and trypanosome transmission in Glossina. Transactions of the Royal Society of Tropical Medicine and Hygiene 75, (in the Press).Google Scholar
Molyneux, D.H., Croft, S. L. & Lavin, D. R. (1980). Studies on the host-paraaiterolationsliip* of Leptomonas species (Protozoa: Kinetoplastida) of Siphonaptera. Journal of Naturnl History (in the Press).Google Scholar
Molyneux, D. H., Lavin, D. R. & Elce, B. (1979). A possiblo relationship between salivarian trypanosomes and Glossina labrum mechanoreeeptors. Annais of Tropical Medicine and Parasitology 73, 287290.Google Scholar
Molyneux, D. H., Selkirk, M. & Lavin, D. R. (1978). Trypanosoma (Megairypanum) melophagium in the sheep ked Melophayus ovinus. A scanning electron microscope(Sem) study of tho parasites and insect gut wall surfacea. (Acta Tropica (Basel) 35, 318328.Google Scholar
Nelson, G. S. (1964). Factors influencing development and behaviour of nlarial nematodesin their arthropodan hosts. In Host Parasite Relationships in Invertebrate Hosts, (ed. A. E. Taylor), pp. 75—119. Symposia of the British Society of Parasitology, vol. Ii. Blackwell Scientific Publications.Google Scholar
Nelson, G. S. (1978). Mosquito-borno filariasis. In Proceedings of the Medical Entomology Cenienary Symposium, Nov. 1977, pp. 1525, published by the Royal Society of Tropical Medicine and Hygiene. Google Scholar
Nelson, G. S. & Pester, F. R. N. (1962). The identifieation of infectivefilaria larvao in Simulidae. Bulletin of the World Health Organisation 27, 473482.Google Scholar
Newton, B. A. (1968). Biochemical peculiarities of trypanosomatid flagellates. Annual Review of Microbiology 22, 109130.Google Scholar
Nogge, G. (1976). Sterility in tsetse flies (Glossina morsitans Westwood) caused by losa of gymbionts, Experientia 32, 995.Google Scholar
Nogge, G. (1978). Aposymbiotic tsetso flies, Glossinti morsitans morsitans obtainedby feeding on rabbits immunized specifically with symbionts. Journal of Insect Physiology 24, 299304.Google Scholar
Nyirady, S. (1973), The germfree culture of three species of Triatominae: Triatoma protracta (Uhler), Triatoma rubida(Uhler), and Rhodnius prolixus Stal.Journal of MedicalEntomology 10, 417448.Google Scholar
Pell, P. E. & Southern, D. I. (1976). Effect of the coccidiostate, sulphaquinoxaline, on Symbiosis in the tsetse fly, Glossina Species. Microbios Letters 2, 203211.Google Scholar
Persaud, C. E. & Davey, K. G. (1971). The eontrol of protease synthesisin the intestine of adults of Rhodniusprolixus. Journal of Insect Physiology 17, 14291440.Google Scholar
Peters, W. (1976). Investigations on the peritrophic membranes of Diptera. In The Insect Integument (ed. H. R. Hepburn), pp. 515546. New York: Elsevier.Google Scholar
Petrusewicz, K. & Macfadyen, A. (1970). Productivity of Terrestrial Animals: Principles and Methods. Oxford: Blackwell Scientific.Google Scholar
Puchta, O. (1955). Experimentelle Untersuchungen über die Bedeutung der Symbiose der Kleiderlaus Pediculus vestimenti Burin. Zeitschrift für Parasitenkunde 17, 140.Google Scholar
Puchta, O. (1956). Züchtungsversuche an den Symbionten von Pediculus vestimenti Burm., nebst physiologischen und morphologischen Beobachtungen. Zeitschrift für Morphologie und Ökologie der Tiere 44, 416441.Google Scholar
Reinhardt, C, Steiger, R. & Hecker, H. (1972). Ultra-structural study of midgut mycetomebacteroids of tho tsetse flies Olossina morsitans, G. fuscipes and G. previpalpis. Acta Tropica 29, 280288.Google Scholar
Renz, A. & Wenk, P. (1981). Intracellular development of the cotton rat filaria Litomosoides carinii in the vector mite Ornithonyssus bacoti. Transactions of the Royal Society of Tropical Medicine 75 (in the Press).Google Scholar
Rice, M. J., Galun.R. & Maroaut, J. (1973). Mouthpart sensilla of the tsetse fly and their function. Iii. Labrocibarial sensilla. Annais of Tropical Medicine and Parasitologij 67, 109116.Google Scholar
Richards, A. G. & Richards, P. A. (1977). The peritrophic membranes of insects. Annual Review of Entomology 22, 219240.Google Scholar
Rinderknecht, H., Geokas, M. C., Silverman, P. & Haverback, B. J. (1968). A new ultrasensitive method for the determination of proteolytic activity. Clinica chimica Acta 21, 197203.Google Scholar
Rosenberg, R. (1980). Ovarian eontrol of blood-meal retention in the mosquito Anopheles freeborni. Journal of Insect Physiology 26, 477480.Google Scholar
Roubaud, E. (1919). Los particularites dela nutritionet la vie symbiotique chez les mouches tsetses. Annales de l'Institut Pasteur 33, 490536.Google Scholar
Rudall, K. M. & Kenchington, W. (1973). The chitinSystem. Biological Reviews of the Cambridge Phüosophical Society 48, 597636.Google Scholar
Sano, J. H. (1956). Tho quantitative nutritional requireinents of Drosophila melanogaster. Journal of Experimental Biology 33, 4572.Google Scholar
Schlein, Y. (1977). Lethal effect of tetraeyclineon tsetso flies following damage to bacteroid symbionts. Experientia 33, 450451.Google Scholar
Shapiro, J. P. & Hagedorn, H. H. (1980). Juvenile horrnone controls competenco of the ovary to reapondto a brain hormonein Aedes aegypti. Abslracts of the International Congress of Entomology, Kyoto 16, 92.Google Scholar
Southwood, T. R. E., Khalaf, S. & Sinden, R. E. (1975). The Micro-organisms of tsetse flies. Acta tropica 32, 259266.Google Scholar
Simklman, A. & Wono, J. (1974). Dietary factors stimulating oögenesis in Aedes aegypti. Biological Bulletin 147, 433442.Google Scholar
Spielman, A., Gwadz, R. W. & Anderson, W. A. (1971). Ecdysonoinitiatod ovarian development in mosquitoes.Journal of Insect Physiology 17, 18071814.Google Scholar
Suivastava, H. K. & Bowman, I. B. R. (1971). Adaptation in oxidation metabolism of Trypanosoma rhodesiense duringtransformation in culture.Comparative Biochemistry and Physiology 40 B, 973998.Google Scholar
Steiger, H. F. (1973). On tho ultrastrueture of Trypanosoma brucei in the course of its life cycle and some related aspects. Acta Tropica 30, 64168.Google Scholar
Stranoeways-Dixon, J. & Lainson, R. (1966). The epidemiology of dermal leishmaniasis in British Honduras. Iii. Tho transmission of Leishmania mexicana to man by Phlebotomus pessoamw, with observations on the development of the parasito in different species of Phlebotomus. Transactions of the Royal Society of Tropical Medicine and Hygiene, 60, 192207.Google Scholar
Taylor, V., (1976). Blood-meal aizeof Glossina 7norsitans Westw.and G. pallidipes Austin (Diptera: Glossinidae)under field conditions.Transactions of the Rhodesia Scientific Association 57, 2934.Google Scholar
Terra, V. R., Ferreira, C. & Debianchi, A. G. (1979). Distribution of digestive enzymes among the endo-and ectoperitrophic spaces and midgut cells of Rhynchosciara and its physiological significance.Journal of Insect Physiology 25, 487494.Google Scholar
Terzian, L. A., Stahler, N. & Irreverre, F. (1956). The effect ofageing and the modifieations of these crTocts on the immunityof mosquitoes toimariamfcction.journaloflmmunology 70, 308313.Google Scholar
Thevenaz, L. A. & Hecker, H. (1980). Distribution and attachment of Trypanosoma (Nannoi7iona#) congolense in the proximalpart of the proboscis of Glossina morsitans morsitans. Acta Trojiica 37, Hs3-175.Google Scholar
Townson, H. (1971). Mortality of various genotypes of the mosquito Aedes aegypti following the uptake of Brugia pahangi. Annais of Tropical Mediane and Parasitology 65, 93106.Google Scholar
Vickerman, K. (1974). The ultrastructure of pathogenic flagellates. In Trypanosomiasis and leishmanias-ti. Ciba Foundation Symposium 20 (new series), 171-198. Elsevier. Google Scholar
Waterhouse, D. F. (1957). Digestion in inseets. Annual Review of Enlomology 2, 118.Google Scholar
Watkins, R. (1971a). Histology of Rhodnius prolixus infected with Trypanosoma rangeli. Journal of Invertebrate Pathology 17, 5966.Google Scholar
Watkins, R. (19716). Trypanosoma rangeli: effect on excretion in Rhodnixis prolixus. Journal of Invertebraie Pathology 17, 6771.Google Scholar
Weurmasx, C. (1946). Investigations concerning the symbiosis of bacteria in Trialoma infestans (Klug.). Ada Leidensia 18, 307319.Google Scholar
Wigglesworth, V. B. (1929). Digestion in the tsetse fly: A study of structure and function. Parasitology 21, 288321.Google Scholar
Wigglesworth, V. B. (1936). Symbiotic bacteria in a blood-sucking insect, Rhodnius prolixus Stal. (Hemiptera, Triatomidae). ParaHtology 28, 284289.Google Scholar
Wigglesworth, V. B. (1952). Symbiosis in blood-sucking inseets. Tijdschrift voor Entomologie 95, 63.Google Scholar
Wijers, D. J. B. (1960). Studies on the behaviour of trypanosomes, belonging to the brucei subgroup, in the mammalian host. Doctoral thesis, University of Amsterdam.Google Scholar
Wilde, V. (1975). Untersuchungen zum Symbioseverhaltnis zwischen Hirudo ofjicinalis und Bakterien. Zoologischer Anzeiger 195, 289306.Google Scholar
Williams, P. (1976). Flagellate infections in cave-dwelling sandflies (Diptera:Psychodidae) in Belize, Central America. Bulletin of Entomological Research 65, 615629.Google Scholar
Yang, Y.-J. & Davies, D. M. (1977). The peritrophic membrane in adult simuliids (Diptera) before and after feeding on blood and blood-sucrose mixtures. Entomologia experimentalis et Applkala 22, 132140.Google Scholar
Zacharias, A. (1928). Untersuchungen über die intracellulare Symbiose bei den Pupiparen. Zeitschrift für Morphologie und Ökologie der Tiere 10, 676737.Google Scholar
Zeledon, R., Alvarenga, N. J. & Schosinsky, K. (1977). Ecology of Trypanosoma eruzi in tho insect vector. Symposium on Chagas’ Disease, New York, 27 June 1977, pp. 5970. Pan American Health Organization.Google Scholar
Ziiuzhikov, D. P. (1970). Permeability of tho peritrophic membrano in the larvao of Aedes aegypti. Journal of Insect Physiology 16, 11931202.Google Scholar
Zimmermann, U. & Mehlan, D. (1976). Water transport across peritrophic membranes of Calliphora erythrocephala. Vii. Comparative Biochemistry and Physiology 55A, 119126.Google Scholar