Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T08:15:53.015Z Has data issue: false hasContentIssue false

The virus infecting the parasitoid Leptopilina boulardi exerts a specific action on superparasitism behaviour

Published online by Cambridge University Press:  15 May 2006

J. VARALDI
Affiliation:
Laboratoire de Biométrie et Biologie Evolutive (UMR 5558); CNRS; Univ. Lyon 1, 43 bd 11 nov, 69622, Villeubanne Cedex, France
S. PETIT
Affiliation:
Laboratoire de Biométrie et Biologie Evolutive (UMR 5558); CNRS; Univ. Lyon 1, 43 bd 11 nov, 69622, Villeubanne Cedex, France
M. BOULÉTREAU
Affiliation:
Laboratoire de Biométrie et Biologie Evolutive (UMR 5558); CNRS; Univ. Lyon 1, 43 bd 11 nov, 69622, Villeubanne Cedex, France
F. FLEURY
Affiliation:
Laboratoire de Biométrie et Biologie Evolutive (UMR 5558); CNRS; Univ. Lyon 1, 43 bd 11 nov, 69622, Villeubanne Cedex, France

Abstract

Parasites often induce behavioural changes in their host. However, it is not necessarily easy to determine whether these changes are representative of an adaptation of the parasite (parasite manipulation), an adaptive response of the host or a side-effect of infection. In a solitary parasitoid of Drosophila larvae (Leptopilina boulardi), viral particles (LbFV) modify the host acceptance behaviour of infected females by increasing their tendency to superparasitize. This behavioural alteration allows for the horizontal transmission of the virus within superparasitized Drosophila larvae. To add support for or against the ‘manipulation hypothesis’, we investigated whether other behavioural components of the parasitoid are affected by viral infection, and whether other forms of horizontal transmission exist. Neither the ability of females to locate host kairomones nor their daily rhythm of locomotor activity was affected by viral infection. However, infected females showed a lower rate of locomotor activity, suggesting a physiological cost of infection. The searching paths of females were also unaffected. Males from infected and uninfected lines showed the same ability to locate females'sexual pheromones. Moreover, alternative modes of horizontal transmission (through food consumption and/or contact with the same Drosophila larvae) did not lead to viral contamination of the parasitoid. The overall specificity of behavioural alteration and of viral horizontal transmission is consistent with the hypothesis that the virus manipulates the behaviour of the parasitoid.

Type
Research Article
Copyright
2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allemand, R., Pompanon, F., Fleury, F., Fouillet, P. and Boulétreau, M. ( 1994). Behavioural circadian rhythms measured in real-time by automatic image analysis: application in parasitoid insects. Physiological Entomology 19, 18.CrossRefGoogle Scholar
Bell, W. J. ( 1990). Searching behaviour patterns in insects. Annual Review of Entomology 35, 447467.CrossRefGoogle Scholar
Bronstein, J. L. ( 1994). Conditional outcomes in mutualistic interactions. Trends in Ecology and Evolution 9, 214217.CrossRefGoogle Scholar
Chassain, C. and Boulétreau, M. ( 1987). Genetic variability in the egg-laying behaviour of Trichogramma maidis. Entomophaga 32, 149157.CrossRefGoogle Scholar
Combes, C. ( 1991). Ethological aspects of parasite transmission. The American Naturalist 138, 866880.CrossRefGoogle Scholar
David, J. ( 1962). A new medium for rearing Drosophila in axenic condition. Drosophila Info Service 36, 128.Google Scholar
Dawkins, R. ( 1982). The Extended Phenotype. Oxford University Press, Oxford, UK.
Delpuech, J. M., Gareau, E., Terrier, O. and Fouillet, P. ( 1998). Sublethal effects of the insecticide chlorpyrifos on the sex pheromonal communication of Trichogramma brassicae. Chemosphere 36, 17751785.CrossRefGoogle Scholar
Fleury, F., Allemand, R., Vavre, F., Fouillet, P. and Boulétreau, M. ( 2000). Adaptive significance of a circadian clock: temporal segregation of activities reduces intrinsic competitive inferiority in Drosophila parasitoids. Proceedings of the Royal Society of London, B 267, 10051010.CrossRefGoogle Scholar
Gandon, S., Rivero, A. and Varaldi, J. ( 2006). Superparasitism evolution: adaptation or manipulation? The American Naturalist 67, E1E22.Google Scholar
Hedlund, K., Vet, L. E. M. and Dicke, M. ( 1996). Generalist and specialist parasitoid strategies of using odours of adult drosophilid flies when searching for larval hosts. Oikos, 390398.CrossRefGoogle Scholar
Helluy, S. and Thomas, F. ( 2003). Effects of Microphallus papillorobistus (Platyhelminthes: Trematoda) on serotonergic immunoreactivity and neuronal architecture in the brain of Gammarus insensibilis. Proceedings of the Royal Society of London, B 270, 15631568.Google Scholar
Hochberg, M. ( 1991). Extra-host interactions between a braconid endoparasitoid, Apanteles glomeratus, and a baculovirus for larvae of Pieris brassicae. Journal of Animal Ecology 60, 6577.CrossRefGoogle Scholar
Holmes, J. C. and Bethel, W. M. ( 1972). Modification of intermediate host behaviour by parasites. In Parasitism and Host Behaviour ( ed. Barnard, C. J. and Behnke, J. M.), pp. 3463. Taylor and Francis, New York.
Ignacimuthu, S., Wackers, F. L. and Dorn, S. ( 2000). The role of chemical cues in host finding and acceptance by Callosobruchus chinensis. Entomologia Experimentalis et Applicata 96, 213219.CrossRefGoogle Scholar
Kavaliers, M., Colwell, D. D. and Choleris, E. ( 1999). Parasites and behaviour: an ethopharmacological analysis and biomedical implications. Neuroscience and Biobehavioural Reviews 23, 10371045.CrossRefGoogle Scholar
Kester, K. M. and Barbosa, P. ( 1994). Behavioural responses to host foodplants of two populations of the insect parasitoid Cotesia congregata (Say). Oecologia 99, 151157.CrossRefGoogle Scholar
Komeza, N., Fouillet, P., Boulétreau, M. and Delpuech, J. M. ( 2001). Modification, by the insecticide Chlopyrifos, of the behavioural response to kairomones of a parasitoid wasp, Leptopilina boulardi. Archives of Environmental Contamination and Toxicology 41, 436442.CrossRefGoogle Scholar
Le Ralec, A. ( 1991). Les hyménoptères parasitoïdes: adaptations de l'appareil reproducteur femelle. Morphologie et ultrastructure de l'ovaire, de l'oeuf et de l'ovipositeur. Thèse de l'Université de Rennes I.
Lopez, M., Rojas, J. C., Vandame, R. and Williams, T. ( 2002). Parasitoid-mediated transmission of an iridescent virus. Journal of Insect Physiology 80, 160170.CrossRefGoogle Scholar
Moore, J. ( 2002). Parasites and the Behaviour of Animals. Oxford University Press, New York.
Poulin, R. ( 1995). ‘Adaptive’ changes in the behaviour of parasitized animals: a critical review. International Journal for Parasitology 25, 13711383.CrossRefGoogle Scholar
Poulin, R. ( 2000). Manipulation of host behaviour by parasites: a weakening paradigm? Proceedings of the Royal Society of London, B 267, 787792.Google Scholar
Quicke, D. L. J. ( 1997). Parasitic Wasps. Chapman and Hall, New York.
Shaltiel, L. and Ayal, Y. ( 1998). The use of kairomones for foraging decisions by an aphid parasitoid in small host aggregations. Ecological Entomology 23, 319329.CrossRefGoogle Scholar
Stasiak, K., Demattei, M. V., Federici, B. A. and Bigot, Y. ( 2000). Phylogenetic position of the Diadromus pulchellus ascovirus DNA polymerase among viruses with large double-stranded DNA genomes. Journal of General Virology 81, 30593072.CrossRefGoogle Scholar
Thomas, F., Adamo, S. and Moore, J. ( 2005). Parasitic manipulation: where are we and where should we go? Behavioural Processes 68, 185199.Google Scholar
Thomas, F., Ulitsky, P., Augier, R., Dusticier, N., Samuel, D., Strambi, C., Biron, D. G. and Cayre, M. ( 2003). Biochemical and histological changes in the brain of the cricket Nemobius sylvsertis infected by the manipulative parasite Paragordius tricuspidatus (Nematomorpha). International Journal for Parasitology 33, 435443.CrossRefGoogle Scholar
Thomas, F., Poulin, R., Gueguan, J. F., Michalakis, Y. and Renaud, F. ( 2000). Are there pros as well as cons to being parasitized? Parasitology Today 16, 533536.Google Scholar
Tompkins, D. M., Mouritsen, K. N. and Poulin, R. ( 2004). Parasite-induced surfacing in the cockle Austrovenus stuchburyi: adaptation or not? Journal of Evolutionnary Biology 17, 247256.Google Scholar
Van Alphen, J. J. M. and Visser, M. E. ( 1990). Superparasitism as an adaptive strategy for insect parasitoids. Annual Review of Entomology 35, 5979.CrossRefGoogle Scholar
Van Alphen, J. J. M. and Vet, L. E. M. ( 1986). An evolutionary approach to host finding and selection. In Insect Parasitoids ( ed. Waage, J. and Greathead, D.), pp. 2361. Academic Press, Orlando, Florida.
Van Alphen, J. J. M., Bernstein, C. and Driessen, G. ( 2003). Information acquisition and time allocation in insect parasitoids. Trends in Ecology and Evolution 18, 8187.CrossRefGoogle Scholar
Van Lenteren, J. C. ( 1981). Host discrimination by parasitoids. In Semiochemicals, their Role in Pest Control ( ed. Nordlund, D. A., Jones, W. J. and Lewis, R. L.), pp. 153179. Wiley-Interscience, New York.
Varaldi, J., Fouillet, P., Ravallec, M., Lopez-Ferber, M., Boulétreau, M. and Fleury, F. ( 2003). Infectious behavior in a parasitoid. Science 302, 1930. DOI:10.1126/science.1088798.CrossRefGoogle Scholar
Varaldi, J., Boulétreau, M. and Fleury, F. ( 2005 a). Cost induced by viral particles manipulating superparasitism behaviour in the parasitoid Leptopilina boulardi. Parasitology 131, 18.Google Scholar
Varaldi, J., Fouillet, P., Boulétreau, M. and Fleury, F. ( 2005 b). Superparasitism acceptance and patch-leaving mechanisms in parasitoids: a comparison between two sympatric wasps. Animal Behaviour 69, 12271234.Google Scholar
Varaldi, J., Gandon, S., Rivero, A., Patot, S. and Fleury, F. ( 2006). A newly discovered virus manipulates superparasitism behaviour in a parasitoid wasp. In Insect Symbiosis, Vol. 2. ( ed. Bourtzis, K. and Miller, T.), CRC Press. (In the Press.)
Vet, L. E. M., De Jong, A. G., Franchi, E. and Papaj, D. R. ( 1998). The effect of complete versus incomplete information on odour discrimination in a parasitic wasp. Animal Behaviour 55, 12711279.CrossRefGoogle Scholar
Vet, L. E. M., Sokolowski, M. B., Macdonald, D. E. and Snellen, H. ( 1993). Responses of a generalist and a specialist parasitoid (Hymenoptera: Eucoilidae) to Drosophilid larval kairomones. Journal of Insect Behaviour 6, 615624.CrossRefGoogle Scholar
Wajnberg, E. and Colazza, S. ( 1998). Genetic variability in the area searched by a parasitic wasp: analysis from automatic video tracking of the walking path. Journal of Insect Physiology 44, 437444.CrossRefGoogle Scholar