Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T01:12:08.691Z Has data issue: false hasContentIssue false

Variation in prevalence and intensity of two avian ectoparasites in a polluted area

Published online by Cambridge University Press:  07 August 2013

TAPIO EEVA*
Affiliation:
Section of Ecology, Department of Biology, FI-20014 University of Turku, Finland
TERO KLEMOLA
Affiliation:
Section of Ecology, Department of Biology, FI-20014 University of Turku, Finland
*
*Corresponding author: Section of Ecology, Department of Biology, FI-20014 University of Turku, Finland. E-mail: [email protected]

Summary

We counted the numbers of pupae of two ectoparasitic flies (Protocalliphora sp. and Ornithomyia sp.) in the nests of a passerine bird, the pied flycatcher (Ficedula hypoleuca) to find out if their prevalence or intensity are affected by long-term environmental pollution by a copper smelter and whether such an interaction would have impacts on birds' breeding success. Fecal metal concentrations of F. hypoleuca nestlings were used to explore direct association between metal levels and parasite prevalence, but we also included other explanatory factors in our analysis, such as timing of breeding, brood size, ambient temperature, habitat quality and host population density. We found that environmental pollution decreased the prevalence of Protocalliphora via changed habitat quality but did not affect the prevalence of Ornithomyia. The prevalence of neither ectoparasite was, however, directly related to ambient metal levels. Both ectoparasites showed higher prevalence when ambient temperature during the nestling period was high, emphasizing the potential of climate change to modify host–parasite relationships. The prevalence of Ornithomyia was further highest in dense F. hypoleuca populations and late broods. Nestling survival decreased with increasing infestation intensity of Ornithomyia while no association was found for Protocalliphora. Despite relatively low numbers and overall weak effect of parasites on survival, the possible delayed and/or sublethal effects of these ectoparasites call for further studies. Our results suggest that pollution-related effects on avian ectoparasite numbers are species-specific and reflect habitat changes rather than direct toxic effect of heavy metals.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arneberg, P. (2001). An ecological law and its macroecological consequences as revealed by studies of relationships between host densities and parasite prevalence. Ecography 24, 352358.CrossRefGoogle Scholar
Ash, J. S. and Monk, J. F. (1959). A collection of Ornithomyia spp. (Dipt., Hippoboscidae) from Oxfordshire. Entomologists’ Monthly Magazine 95, 8081.Google Scholar
Baker, J. R. (1967). A review of the role played by the Hippoboscidae (Diptera) as vectors of endoparasites. Journal of Parasitology 53, 412418.CrossRefGoogle ScholarPubMed
Belskii, E. A., Lugas'kova, N. V. and Karfidova, A. A. (2005). Reproductive parameters of adult birds and morphophysiological characteristics of chicks in the pied flycatcher (Ficedula hypoleuca Pall.) in technogenically polluted habitats. Russian Journal of Ecology 36, 329335.CrossRefGoogle Scholar
Bennett, G. F. and Whitworth, T. L. (1991). Studies on the life history of some species of Protocalliphora (Diptera: Calliphoridae). Canadian Journal of Zoology 69, 20482058.CrossRefGoogle Scholar
Berglund, Å. M. M., Ingvarsson, P. K., Danielsson, H. and Nyholm, N. E. I. (2010). Lead exposure and biological effects in pied flycatchers (Ficedula hypoleuca) before and after the closure of a lead mine in northern Sweden. Environmental Pollution 158, 13681375.CrossRefGoogle ScholarPubMed
Berglund, Å. M. M., Koivula, M. J. and Eeva, T. (2011). Species- and age-related variation in metal exposure and accumulation of two passerine bird species. Environmental Pollution 159, 23682374.CrossRefGoogle ScholarPubMed
Berglund, Å. M. M., Rainio, M. and Eeva, T. (2012). Decreased metal accumulation in passerines as a result of reduced emissions. Environmental Toxicology and Chemistry 31, 13171323.CrossRefGoogle ScholarPubMed
Blanar, C. A., Munkittrick, K. R., Houlahan, J., MacLatchy, D. L. and Marcogliese, D. J. (2009). Pollution and parasitism in aquatic animals: a meta-analysis of effect size. Aquatic Toxicology 93, 1828.CrossRefGoogle ScholarPubMed
Brotons, L., Magrans, M., Ferrus, L. and Nadal, J. (1998). Direct and indirect effects of pollution on the foraging behaviour of forest passerines during the breeding season. Canadian Journal of Zoology 76, 556565.CrossRefGoogle Scholar
Clayton, D. H. and Moore, J. (1997). Host–Parasite Evolution, General Principles and Avian Models. Oxford University Press, New York, USA.CrossRefGoogle Scholar
Corbet, G. B. (1956). The life-history and host-relations of a Hippoboscid fly Ornithomyia fringillina Curtis. Journal of Animal Ecology 25, 403420.CrossRefGoogle Scholar
Dauwe, T., Bervoets, L., Blust, R., Pinxten, R. and Eens, M. (2000). Can excrement and feathers of nestling songbirds be used as biomonitors for heavy metal pollution? Archives of Environmental Contamination and Toxicology 39, 541546.CrossRefGoogle ScholarPubMed
Dawson, R. D., Hillen, K. K. and Whitworth, T. L. (2005). Effects of experimental variation in temperature on larval densities of parasitic Protocalliphora (Diptera: calliphoridae) in nests of tree swallows (Passeriformes: Hirundinidae). Environmental Entomology 34, 563568.CrossRefGoogle Scholar
Dubiec, A. and Cichon, M. (2005). Seasonal decline in nestling cellular immunocompetence results from environmental factors – an experimental study. Canadian Journal of Zoology–Revue Canadienne de Zoologie 83, 920925.CrossRefGoogle Scholar
Eeva, T. and Lehikoinen, E. (1994). Effects of air pollution on the breeding of pied flycatcher Ficedula hypoleuca and great tit Parus major. Journal für Ornithologie 135, 236.Google Scholar
Eeva, T., Lehikoinen, E. and Nurmi, J. (1994). Effects of ectoparasites on breeding success of great tits (Parus major) and pied flycatchers (Ficedula hypoleuca) in an air pollution gradient. Canadian Journal of Zoology 72, 624635.CrossRefGoogle Scholar
Eeva, T., Lehikoinen, E. and Pohjalainen, T. (1997). Pollution-related variation in food supply and breeding success in two hole-nesting passerines. Ecology 78, 11201131.CrossRefGoogle Scholar
Eeva, T., Ryömä, M. and Riihimäki, J. (2005). Pollution-related changes in diets of two insectivorous passerines. Oecologia 145, 629639.CrossRefGoogle ScholarPubMed
Eeva, T., Belskii, E., Gilyazov, A. S. and Kozlov, M. V. (2012 a). Pollution impacts on bird population density and species diversity at four non-ferrous smelter sites. Biological Conservation 150, 3341.CrossRefGoogle Scholar
Eeva, T., Rainio, M., Kanerva, M. and Salminen, J.-P. (2012 b). Plasma carotenoid levels are not directly related to heavy metal exposure or reproductive success in three insectivorous passerines. Environmental Toxicology and Chemistry 31, 13631369.CrossRefGoogle ScholarPubMed
Flückiger, W., Braun, S. and Hiltbrunner, E. (2002). Effects of air pollutants on biotic stress. In Air Pollution and Plant Life (ed. Bell, J. N. B. and Treshow, M.), pp. 379406. John Wiley & Sons, Chichester, UK.Google Scholar
Gallizzi, K., Alloitteau, O., Harrang, E. and Richner, H. (2008). Fleas, parental care, and transgenerational effects on tick load in the great tit. Behavioral Ecology 19, 12251234.CrossRefGoogle Scholar
Gentes, M. L., Whitworth, T. L., Waldner, C., Fenton, H. and Smits, J. E. (2007). Tree swallows (Tachycineta bicolor) nesting on wetlands impacted by oil sands mining are highly parasitized by the bird blow fly Protocalliphora spp. Journal of Wildlife Diseases 43, 167178.CrossRefGoogle ScholarPubMed
Gold, C. S. and Dahlsten, D. L. (1983). Effects of parasitic flies (Protocalliphora spp.) on nestling mountain and chestnut-backed chickadees. Wilson Bulletin 95, 560572.Google Scholar
Grunin, K. Ya. (1989). Family Hippoboscidae. In Keys to the Insects of the European Part of the USSR, Volume V. Diptera and Siphonaptera. Part II (ed. Bei-Bienko, G. Ya. and Steyskal, G. C.), pp. 979986. E.J. Brill, Leiden, the Netherlands.Google Scholar
Hannam, K. (2006). Ectoparasitic blow flies (Protocalliphora sp.) and nestling Eastern Bluebirds (Sialia sialis): direct effects and compensatory strategies. Canadian Journal of Zoology–Revue Canadienne de Zoologie 84, 921930.CrossRefGoogle Scholar
Härkönen, L., Härkönen, S., Kaitala, A., Kaunisto, S., Kortet, R., Laaksonen, S. and Ylönen, H. (2010). Predicting range expansion of an ectoparasite – the effect of spring and summer temperatures on deer ked Lipoptena cervi (Diptera: Hippoboscidae) performance along a latitudinal gradient. Ecography 33, 906912.CrossRefGoogle Scholar
Heylen, D., Adriaensen, F., Dauwe, T., Eens, M. and Matthysen, E. (2009). Offspring quality and tick infestation load in brood rearing great tits Parus major. Oikos 118, 14991506.CrossRefGoogle Scholar
Janssens, E., Dauwe, T., Pinxten, R. and Eens, M. (2003). Breeding performance of great tits (Parus major) along a gradient of heavy metal pollution. Environmental Toxicology and Chemistry 22, 11401145.2.0.CO;2>CrossRefGoogle ScholarPubMed
Kalliola, R. (1973). Suomen kasvimaantiede. WSOY.Google Scholar
Khan, R. A. and Thulin, J. (1991). Influence of pollution on parasites of aquatic animals. Advances in Parasitology 30, 201238.CrossRefGoogle ScholarPubMed
Kiikkilä, O. (2003). Heavy-metal pollution and remediation of forest soil around the Harjavalta Cu-Ni smelter, in SW Finland. Silva Fennica 37, 399415.CrossRefGoogle Scholar
Kozlov, M., Zvereva, E. L. and Zverev, V. (2009). Impacts of Point Polluters on Terrestrial Biota. Springer, Dordrecht, the Netherlands.CrossRefGoogle Scholar
Lambrechts, M. M., Adriaensen, F., Ardia, D. R., Artemyev, A. V., Atiénzar, F., Banbura, J., Barba, E., Bouvier, J.-C., Camprodon, J., Cooper, C. B. et al. (2010). The design of artificial nestboxes for the study of secondary hole-nesting birds: a review of methodological inconsistencies and potential biases. Acta Ornithologica 45, 126.CrossRefGoogle Scholar
Lee, P. L. M. and Clayton, D. H. (1995). Population biology of swift (Apus apus) ectoparasites in relation to host reproductive success. Ecological Entomology 20, 4350.CrossRefGoogle Scholar
Loye, J. E. and Zuk, M. (1991). Bird–Parasite Interactions: Ecology, Evolution and Behaviour. Oxford University Press, Oxford, UK.Google Scholar
Lundberg, A. and Alatalo, R. V. (1992). The Pied Flycatcher. T. & A. D. Poyser, London, UK.Google Scholar
Lürling, M. and Scheffer, M. (2007). Info-disruption: pollution and the transfer of chemical information between organisms. Trends in Ecology and Evolution 22, 374379.CrossRefGoogle ScholarPubMed
Maa, T. C. (1969). A revised checklist and concise host index of Hippoboscidae (Diptera). Pacific Insects Monographs (Honolulu: Bishop Museum, Honolulu, Hawaii) 20, 261299.Google Scholar
Martinez-De La Puente, J., Merino, S., Tomas, G., Moreno, J., Morales, J., Lobato, E., Garcia-Fraile, S. and Belda, E. J. (2010). The blood parasite Haemoproteus reduces survival in a wild bird: a medication experiment. Biology Letters 6, 663665.CrossRefGoogle Scholar
McCallum, H., Barlow, N. and Hone, J. (2001). How should pathogen transmission be modelled? Trends in Ecology and Evolution 16, 295300.CrossRefGoogle ScholarPubMed
McClure, H. E. (1984). The occurrence of Hippoboscid flies on some species of birds in Southern California. Journal of Field Ornithology 55, 230240.Google Scholar
Merino, S. and Potti, J. (1995). Mites and blowflies decrease growth and survival in nestling pied flycatchers. Oikos 73, 95103.CrossRefGoogle Scholar
Merino, S. and Potti, J. (1996). Weather dependent effects of nest ectoparasites on their bird hosts. Ecography 19, 107113.CrossRefGoogle Scholar
Møller, A. P. (2010). Host–parasite interactions and vectors in the barn swallow in relation to climate change. Global Change Biology 16, 11581170.CrossRefGoogle Scholar
Pavel, V., Chutný, B., Petrusková, T. and Petrusek, A. (2008). Blow fly Trypocalliphora braueri parasitism on Meadow Pipit and Bluethroat nestlings in Central Europe. Journal of Ornithology 149, 193197.CrossRefGoogle Scholar
Petersen, F. T., Damgaard, J. and Meier, R. (2007). DNA Taxonomy: how many DNA sequences are needed for solving a taxonomic problem? The case of two parapatric species of louse flies (Diptera: Hippoboscidae: Ornithomya Latreille, 1802). Arthropod Systematics and Phylogeny 62, 119125.CrossRefGoogle Scholar
Pinkowski, B. C. (1977). Blowfly parasitism of eastern bluebirds in natural and artificial nest sites. Journal of Wildlife Management 41, 272276.CrossRefGoogle Scholar
Puchala, P. (2004). Detrimental effects of larval blow flies (Protocalliphora azurea) on nestlings and breeding success of tree sparrows (Passer montanus). Canadian Journal of Zoology–Revue Canadienne de Zoologie 82, 12851290.CrossRefGoogle Scholar
Rogers, C. A., Robertson, R. J. and Stutchbury, B. J. (1991). Patterns and effects of parasitism by Protocalliphora sialia on tree swallow nestlings. In Bird-Parasite Interactions – Ecology, Evolution and Behaviour (ed. Loye, J. E.), pp. 123139. Oxford University Press, Oxford, UK.Google Scholar
Rognes, K. (1991). Blowflies (Diptera, Calliphoridae) of Fennoscandia and Denmark. E. J. Brill/Scandinavian Science Press, Leiden, The Netherlands.CrossRefGoogle Scholar
Sabrosky, C. W., Bennett, G. F. and Whitworth, T. L. (1989). Bird Blow Flies (Protocalliphora) in North America (Diptera: Calliphoridae), with Notes on the Palearctic Species. Smithsonian Institution Press, Washington, DC, USA.CrossRefGoogle Scholar
Saino, N., Calza, S. and Møller, A. P. (1998). Effects of a dipteran ectoparasite on immune response and growth trade-offs in barn swallow, Hirundo rustica, nestlings. Oikos 81, 217228.CrossRefGoogle Scholar
Salemaa, M., Vanha-Majamaa, I. and Derome, J. (2001). Understorey vegetation along a heavy-metal pollution gradient in SW Finland. Environmental Pollution 112, 339350.CrossRefGoogle ScholarPubMed
SAS (2008). SAS/STAT ® 9.2 User's Guide. SAS Institute Inc., Cary, NC.Google Scholar
Senar, J. C., Copete, J. L., Domenech, J. and Vonwalter, G. (1994). Prevalence of louse-flies Diptera, Hippoboscidae parasiting a cardueline finch and its effect on body condition. Ardea 82, 157160.Google Scholar
Tompkins, D. M., Jones, T. and Clayton, D. H. (1996). Effect of vertically transmitted ectoparasites on the reproductive success of swifts (Apus apus). Functional Ecology 10, 733740.CrossRefGoogle Scholar
Trilar, T. and Krčmar, S. (2005). Contribution to the knowledge of louse flies of Croatia (Diptera: Hippoboscidae). Natura Croatica 14, 131140.Google Scholar
Walker, M. D. and Rotherham, I. D. (2010 a). Characteristics of Crataerina pallida (Diptera: Hippoboscidae) populations; a nest ectoparasite of the common swift, Apus apus (Ayes: Apodidae). Experimental Parasitology 126, 451455.CrossRefGoogle Scholar
Walker, M. D. and Rotherham, I. D. (2010 b). The breeding success of common swifts Apus apus is not correlated with the abundance of their louse fly Crataerina pallida parasites. Bird Study 57, 504508.CrossRefGoogle Scholar
Weis, J. S., Bergey, L., Reichmuth, J. and Candelmo, A. (2011). Living in a contaminated estuary: behavioral changes and ecological consequences for five species. BioScience 61, 375385.CrossRefGoogle Scholar
Whitworth, T. L. and Bennett, G. F. (1992). Pathogenicity of larval Protocalliphora (Diptera: Calliphoridae) parasitizing nestling birds. Canadian Journal of Zoology 70, 21842191.CrossRefGoogle Scholar
Williams, H. H. and Mackenzie, K. (2003). Marine parasites as pollution indicators: an update. Parasitology 126, S27S41.CrossRefGoogle ScholarPubMed