Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T20:07:56.927Z Has data issue: false hasContentIssue false

Variation in growth and drug susceptibility among Giardia duodenalis assemblages A, B and E in axenic in vitro culture and in the gerbil model

Published online by Cambridge University Press:  08 August 2011

E. BÉNÉRÉ
Affiliation:
Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, B-2020 Antwerp, Belgium
T. VAN ASSCHE
Affiliation:
Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, B-2020 Antwerp, Belgium
P. COS
Affiliation:
Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, B-2020 Antwerp, Belgium
L. MAES*
Affiliation:
Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, B-2020 Antwerp, Belgium
*
*Corresponding author: Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium. Tel: 0032 3 265 33 54. Fax: 0032 3 265 33 26. E-mail: [email protected]

Summary

This study investigated the molecular and biological variation among different Giardia duodenalis assemblages. In vitro growth and susceptibility to albendazole, fenbendazole, flubendazole, metronidazole, tinidazole and furazolidone was studied for laboratory (AI: WB, AII: G1 and B: GS/M-83-H7) and 6 field isolates of assemblage subtype AI, AII, B and EIII. Additionally, isolates of the 3 assemblages were evaluated in the gerbil upon 3-day oral treatment with albendazole (6 mg/kg), flubendazole (5 mg/kg) and metronidazole (20 mg/kg). Assemblage AI grew significantly faster than all other assemblage subtypes, which showed comparable generation times. The assemblage A laboratory strains displayed altered in vitro drug susceptibilities compared to their matching AI or AII field isolate. No variation in drug susceptibility was observed between field isolates of assemblages A and E. However, assemblage A laboratory strains were more susceptible to the benzimidazoles and less susceptible to the nitro-imidazoles and furazolidone than the assemblage B laboratory strain. In the gerbil, no markedly different drug susceptibilities were observed. In conclusion, the Giardia assemblage subtype can be associated with differences in growth characteristics rather than in drug susceptibility.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arguello-Garcia, R., Cruz-Soto, M., Romero-Montoya, L. and Ortega-Pierres, G. (2004). Variability and variation in drug susceptibility among Giardia duodenalis isolates and clones exposed to 5-nitroimidazoles and benzimidazoles in vitro. Journal of Antimicrobial Chemotherapy 54, 711721. doi: dkh388 [pii].CrossRefGoogle ScholarPubMed
Benere, E., da Luz, R. A., Vermeersch, M., Cos, P. and Maes, L. (2007). A new quantitative in vitro microculture method for Giardia duodenalis trophozoites. Journal of Microbiological Methods 71, 101106. doi: 10.1016/j.mimet.2007.07.014.CrossRefGoogle ScholarPubMed
Benere, E., Geurden, T., Robertson, L., Van Assche, T., Cos, P. and Maes, L. (2010). Infectivity of Giardia duodenalis assemblages A and E for the gerbil and axenisation of duodenal trophozoites. Parasitology International 59, 634637. doi: 10.1016/j.parint.2010.08.001.CrossRefGoogle Scholar
Binz, N., Thompson, R. C., Lymbery, A. J. and Hobbs, R. P. (1992). Comparative studies on the growth dynamics of two genetically distinct isolates of Giardia duodenalis in vitro. International Journal for Parasitology 22, 195202. doi: 0020-7519(92)90101-P.CrossRefGoogle ScholarPubMed
Boreham, P. F., Phillips, R. E. and Shepherd, R. W. (1984). The sensitivity of Giardia intestinalis to drugs in vitro. Journal of Antimicrobial Chemotherapy 14, 449461.CrossRefGoogle ScholarPubMed
Boreham, P. F., Phillips, R. E. and Shepherd, R. W. (1986). The activity of drugs against Giardia intestinalis in neonatal mice. Journal of Antimicrobial Chemotherapy 18, 393398.CrossRefGoogle ScholarPubMed
Boreham, P. F., Phillips, R. E. and Shepherd, R. W. (1987). Heterogeneity in the responses of clones of Giardia intestinalis to anti-giardial drugs. Transactions of the Royal Society of Tropical Medicine and Hygiene 81, 406407.CrossRefGoogle ScholarPubMed
Bowman, D. D. and Lucio-Forster, A. (2010). Cryptosporidiosis and giardiasis in dogs and cats: veterinary and public health importance. Experimental Parasitology 124, 121127. S0014-4894(09)00004-6 [pii];10.1016/j.exppara.2009.01.003 [doi].CrossRefGoogle ScholarPubMed
Brown, D. M., Upcroft, J. A. and Upcroft, P. (1995). Free radical detoxification in Giardia duodenalis. Molecular and Biochemical Parasitology 72, 4756.CrossRefGoogle ScholarPubMed
Caccio, S. M., Beck, R., Lalle, M., Marinculic, A. and Pozio, E. (2008). Multilocus genotyping of Giardia duodenalis reveals striking differences between assemblages A and B. International Journal for Parasitology 38, 15231531. doi: 10.1016/j.ijpara.2008.04.008.CrossRefGoogle ScholarPubMed
Cevallos, A., Carnaby, S., James, M. and Farthing, J. G. (1995). Small intestinal injury in a neonatal rat model of giardiasis is strain dependent. Gastroenterology 109, 766773. doi: S001650859500285X.CrossRefGoogle Scholar
Cevallos, A. M., McHugh, T. D., Carnaby, S. and Farthing, M. J. G. (1991). Phenotypic and genotypic variation in giardia lamblia. Saudi Medical Journal 12, 285289.Google Scholar
Cruz, A., Sousa, M. I., Azeredo, Z., Leite, E., Figueiredo de Sousa, J. C. and Cabral, M. (2003). Isolation, excystation and axenization of Giardia lamblia isolates: in vitro susceptibility to metronidazole and albendazole. Journal of Antimicrobial Chemotherapy 51, 10171020. doi: 10.1093/jac/dkg150.CrossRefGoogle ScholarPubMed
Ellis, J. E., Wingfield, J. M., Cole, D., Boreham, P. F. and Lloyd, D. (1993). Oxygen affinities of metronidazole-resistant and -sensitive stocks of Giardia intestinalis. International Journal for Parasitology 23, 3539.CrossRefGoogle ScholarPubMed
Escobedo, A. A. and Cimerman, S. (2007). Giardiasis: a pharmacotherapy review. Expert Opinion on Pharmacotherapy 8, 18851902. doi: 10.1517/14656566.8.12.1885.CrossRefGoogle ScholarPubMed
Farbey, M. D., Reynoldson, J. A. and Thompson, R. C. (1995). In vitro drug susceptibility of 29 isolates of Giardia duodenalis from humans as assessed by an adhesion assay. International Journal for Parasitology 25, 593599.CrossRefGoogle ScholarPubMed
Feng, Y., Ortega, Y., Cama, V., Terrel, J. and Xiao, L. (2008). High intragenotypic diversity of Giardia duodenalis in dairy cattle on three farms. Parasitology Research 103, 8792. doi: 10.1007/s00436-008-0932-5.CrossRefGoogle ScholarPubMed
Franzen, O., Jerlstrom-Hultqvist, J., Castro, E., Sherwood, E., Ankarklev, J., Reiner, D. S., Palm, D., Andersson, J. O., Andersson, B. and Svard, S. G. (2009). Draft genome sequencing of Giardia intestinalis assemblage B isolate GS: is human giardiasis caused by two different species? PLoS Pathogens 5, e1000560-doi: 10.1371/journal.ppat.1000560.CrossRefGoogle Scholar
Geurden, T., Claerebout, E., Dursin, L., Deflandre, A., Bernay, F., Kaltsatos, V. and Vercruysse, J. (2006). The efficacy of an oral treatment with paromomycin against an experimental infection with Giardia in calves. Veterinary Parasitology 135, 241247. doi: 10.1016/j.vetpar.2005.09.006.CrossRefGoogle ScholarPubMed
Geurden, T., Geldhof, P., Levecke, B., Martens, C., Berkvens, D., Casaert, S., Vercruysse, J. and Claerebout, E. (2008). Mixed Giardia duodenalis assemblage A and E infections in calves. International Journal for Parasitology 38, 259264. doi: 10.1016/j.ijpara.2007.07.016.CrossRefGoogle Scholar
Geurden, T., Levecke, B., Caccio, S. M., Visser, A., De, G. G., Casaert, S., Vercruysse, J. and Claerebout, E. (2009). Multilocus genotyping of Cryptosporidium and Giardia in non-outbreak related cases of diarrhoea in human patients in Belgium. Parasitology 136, 11611168. doi: 10.1017/S0031182009990436.CrossRefGoogle ScholarPubMed
Geurden, T., Vercruysse, J. and Claerebout, E. (2010). Is Giardia a significant pathogen in production animals? Experimental Parasitology 124, 98106. doi: 10.1016/j.exppara.2009.03.001.CrossRefGoogle ScholarPubMed
Gottschall, D. W., Theodorides, V. J. and Wang, R. (1990). The metabolism of benzimidazole anthelmintics. Parasitology Today 6, 115124. doi: 0169-4758(90)90228-V.CrossRefGoogle Scholar
Jerlstrom-Hultqvist, J., Franzen, O., Ankarklev, J., Xu, F., Nohynkova, E., Andersson, J. O., Svard, S. G. and Andersson, B. (2010). Genome analysis and comparative genomics of a Giardia intestinalis assemblage E isolate. BMC.Genomics 11, 543557. doi: 1186/1471-2164-11-543.Google ScholarPubMed
Jokipii, A. M. and Jokipii, L. (1987). Comparative activity of metronidazole and tinidazole against Clostridium difficile and Peptostreptococcus anaerobius. Antimicrobial Agents and Chemotherapy 31, 183186.CrossRefGoogle ScholarPubMed
Karanis, P. and Ey, P. L. (1998). Characterization of axenic isolates of Giardia intestinalis established from humans and animals in Germany. Parasitology Research 84, 442449.CrossRefGoogle ScholarPubMed
Kasprzak, W. and Majewska, A. C. (1985). Improvement in isolation and axenic growth of Giardia intestinalis strains. Transactions of the Royal Society of Tropical Medicine and Hygiene 79, 551557.CrossRefGoogle ScholarPubMed
Katiyar, S. K., Gordon, V. R., McLaughlin, G. L. and Edlind, T. D. (1994). Antiprotozoal activities of benzimidazoles and correlations with beta-tubulin sequence. Antimicrobial Agents and Chemotherapy 38, 20862090.CrossRefGoogle ScholarPubMed
Keister, D. B. (1983). Axenic culture of Giardia lamblia in TYI-S-33 medium supplemented with bile. Transactions of the Royal Society of Tropical Medicine and Hygiene 77, 487488.CrossRefGoogle ScholarPubMed
Lalle, M., Jimenez-Cardosa, E., Caccio, S. M. and Pozio, E. (2005). Genotyping of Giardia duodenalis from humans and dogs from Mexico using a beta-giardin nested polymerase chain reaction assay. Journal of Parasitology 91, 203205.CrossRefGoogle ScholarPubMed
Lemee, V., Zaharia, I., Nevez, G., Rabodonirina, M., Brasseur, P., Ballet, J. J. and Favennec, L. (2000). Metronidazole and albendazole susceptibility of 11 clinical isolates of Giardia duodenalis from France. Journal of Antimicrobial Chemotherapy 46, 819821.CrossRefGoogle ScholarPubMed
Mayrhofer, G., Andrews, R. H., Ey, P. L. and Chilton, N. B. (1995). Division of Giardia isolates from humans into two genetically distinct assemblages by electrophoretic analysis of enzymes encoded at 27 loci and comparison with Giardia muris. Parasitology 111, 1117.CrossRefGoogle ScholarPubMed
Meloni, B. P., Lymbery, A. J. and Thompson, R. C. (1988). Isoenzyme electrophoresis of 30 isolates of Giardia from humans and felines. American Journal of Tropical Medicine and Hygiene 38, 6573.Google Scholar
Mohamadnezhad, F., Ghaffarifar, F. and Dalinmi, A. (2008). In vitro effects of metronidazole and albendazole on Giardia lamblia isolated from iranian patients. Iranian Journal of Parasitology 3, 3842.Google Scholar
Moreno, S. N., Mason, R. P. and Docampo, R. (1984). Distinct reduction of nitrofurans and metronidazole to free radical metabolites by Tritrichomonas foetus hydrogenosomal and cytosolic enzymes. Journal of Biological Chemistry 259, 82528259.CrossRefGoogle ScholarPubMed
Morgan, U. M., Reynoldson, J. A. and Thompson, R. C. (1993). Activities of several benzimidazoles and tubulin inhibitors against Giardia spp. in vitro. Antimicrobial Agents and Chemotherapy 37, 328331.CrossRefGoogle ScholarPubMed
Muller, J., Sterk, M., Hemphill, A. and Muller, N. (2007). Characterization of Giardia lamblia WB C6 clones resistant to nitazoxanide and to metronidazole. Journal of Antimicrobial Chemotherapy 60, 280287. doi: 10.1093/jac/dkm205.Google Scholar
Muller, N. and von Allmen, N. (2005). Recent insights into the mucosal reactions associated with Giardia lamblia infections. International Journal for Parasitology 35, 13391347. doi: 10.1016/j.ijpara.2005.07.008.CrossRefGoogle ScholarPubMed
Nillius, D., Muller, J., and Muller, N. (2011). Nitroreductase (GlNR1) increases susceptibility of Giardia lamblia and Escherichia coli to nitro drugs. Journal of Antimicrobial Chemotherapy 66, 10291035. dkr029 [pii];10.1093/jac/dkr029 [doi].CrossRefGoogle ScholarPubMed
O'Handley, R. M., Olson, M. E., McAllister, T. A., Morck, D. W., Jelinski, M., Royan, G. and Cheng, K. J. (1997). Efficacy of fenbendazole for treatment of giardiasis in calves. American Journal of Veterinary Research 58, 384388.CrossRefGoogle ScholarPubMed
Plutzer, J., Ongerth, J. and Karanis, P. (2010). Giardia taxonomy, phylogeny and epidemiology: Facts and open questions. International Journal of Hygiene and Environmental Health 213, 321333. doi: 10.1016/j.ijheh.2010.06.005.Google Scholar
Raether, W. and Hanel, H. (2003). Nitroheterocyclic drugs with broad spectrum activity. Parasitology Research 90, S19S39. doi: 10.1007/s00436-002-0754-9.CrossRefGoogle ScholarPubMed
Read, C. M., Monis, P. T. and Thompson, R. C. (2004). Discrimination of all genotypes of Giardia duodenalis at the glutamate dehydrogenase locus using PCR-RFLP. Infection, Genetics and Evolution 4, 125130. doi: 10.1016/j.meegid.2004.02.001.Google Scholar
Sahagun, J., Clavel, A., Goni, P., Seral, C., Llorente, M. T., Castillo, F. J., Capilla, S., Arias, A. and Gomez-Lus, R. (2008). Correlation between the presence of symptoms and the Giardia duodenalis genotype. European Journal of Clinical Microbiology and Infectious Diseases 27, 8183. doi: 10.1007/s10096-007-0404-3.CrossRefGoogle ScholarPubMed
Solaymani-Mohammadi, S., Genkinger, J. M., Loffredo, C. A. and Singer, S. M. (2010). A meta-analysis of the effectiveness of albendazole compared with metronidazole as treatments for infections with Giardia duodenalis. PLoS Neglected Tropical Diseases 4, e682-doi: 10.1371/journal.pntd.0000682.CrossRefGoogle ScholarPubMed
Sweetman, S. C. (2007). Martindale the Complete Drug Reference. 35th Edn. Pharmaceutical Press, London.Google Scholar
Townson, S. M., Upcroft, J. A. and Upcroft, P. (1996). Characterisation and purification of pyruvate:ferredoxin oxidoreductase from Giardia duodenalis. Molecular and Biochemical Parasitology 79, 183193. 0166685196026618 [pii].CrossRefGoogle ScholarPubMed
Upcroft, P. and Upcroft, J. A. (2001). Drug targets and mechanisms of resistance in the anaerobic protozoa. Clinical Microbiology Review 14, 150164. doi: 10.1128/CMR.14.1.150-164.2001.CrossRefGoogle ScholarPubMed
Vanparijs, O., Hermans, L. and Van der Flaes, L. (1985). Anthelmintic efficacy of flubendazole paste against nematodes and cestodes in dogs and cats. American Journal of Veterinary Research 46, 25392541.Google ScholarPubMed
Visvesvara, G. S. (1980). Axenic growth of Giardia lamblia in Diamond's TPS-1 medium. Transactions of the Royal Society of Tropical Medicine and Hygiene 74, 213215.CrossRefGoogle ScholarPubMed
Zajac, A. M., LaBranche, T. P., Donoghue, A. R. and Chu, T. C. (1998). Efficacy of fenbendazole in the treatment of experimental Giardia infection in dogs. American Journal of Veterinary Research 59, 6163.CrossRefGoogle ScholarPubMed