Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T13:29:51.823Z Has data issue: false hasContentIssue false

Unidentified extracellular prokaryotes within the byssal threads of the deep-sea vent mussel Bathymodiolus azoricus

Published online by Cambridge University Press:  13 June 2006

E. KÁDÁR
Affiliation:
Department of Oceanography and Fisheries, University of Azores, Rua Cais de Santa Cruz, 9900 Horta, Portugal
C. AZEVEDO
Affiliation:
Laboratory of Cell Biology, ICBAS/University of Porto and CIIMAR, 4099-003, Porto, Portugal

Abstract

Bacterial symbiosis and/or parasitism is widespread in hydrothermal bivalves, and is typically developed in gills, with a lower incidence in mantle and digestive glands, while it has never been described in byssus. Using ultrastructural examination, we provide evidence for the existence of a potentially new group of filamentous prokaryotic organism in Bathymodiolus azoricus byssus, with putative parasitic influence. Additionally, a cystic, undefined organism was found with an unclear physiological role within the spongy net of the byssus plaque. Our results indicate that in spite of its antibacterial protective sheath, byssus gives access to prokaryotic organisms becoming prone to failure through damaged collagen fibres.

Type
Research Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Brown, C. H. ( 1952). Some structural proteins of Mytilus edulis L. Journal of Microscopic Science 93, 487502.Google Scholar
De Buron, I. and Morand, S. ( 2004). Deep-sea hydrothermal vent parasites: why do we not find more? Parasitology 128, 16.Google Scholar
Desbruyeres, D., Almeida, A., Biscoito, M., Comtet, T., Khripounoff, A., Le Bris, N., Sarradin, P. M. and Segonzac, M. ( 2000). A review of the distribution of hydrothermal vent communities along the northern Mid-Atlantic Ridge: dispersal vs environmental controls. Hydrobiologia 440, 201216.CrossRefGoogle Scholar
Distel, D. L. and Felbeck, H. ( 1987). Endosymbiosis in the lucinid clams lucinoma-aequizonata, lucinoma-annulata and lucina-floridana – a reexamination of the functional-morphology of the gills as bacteria-bearing organs. Marine Biology 96, 7986.CrossRefGoogle Scholar
Fiala-Medioni, A. and Lepennec, M. ( 1987). Trophic structural adaptations in relation to the bacterial association of bivalve mollusks from hydrothermal vents and subduction zones. Symbiosis 4, 6374.Google Scholar
Haug, T., Stensvag, K., Olsen, O. M., Sandsdalen, E. and Styrvold, O. B. ( 2004). Antibacterial activity in various tissues of the horse mussel, Modiolus modiolus. Journal of Invertebrate Pathology 85, 112119.CrossRefGoogle Scholar
Hoffmeister, M. and Martin, W. ( 2003). Interspecific evolution: microbial symbiosis, endosymbiosis and gene transfer. Environmental Microbiology 8, 641649.CrossRefGoogle Scholar
Johnson, M. A. and Fernandez, C. ( 2001). The presence of putative sulphur-oxidizing bacteria colonizing the periostracal secretion in the endosymbiont-bearing bivalve Loripes lucinalis. Journal of the Marine Biological Association of the United Kingdom 81, 893894.CrossRefGoogle Scholar
Johnson, M. A. and Lepennec, M. ( 1995). Association between the mollusk bivalve Loripes lucinalis and a Chlamydia-like organism, with comments on its pathogenic impact, life-cycle and possible mode of transmission. Marine Biology 123, 523530.CrossRefGoogle Scholar
Kádár, E., Bettencourt, R., Costa, V., Santos, R. S., Lobo-Da-Cunha, A. and Dando, P. ( 2005 a). Experimentally induced endosymbiont loss and re-acquirement in the hydrothermal vent bivalve Bathymodiolus azoricus. Journal of Experimental Marine Biology and Ecology 318, 99110.Google Scholar
Kádár, E., Costa, V., Martins, I., Santos, R. S. and Powell, J. J. ( 2005 b). Enrichment in trace metals of macro-invertebrate habitats at hydrothermal vents along the Mid Atlantic Ridge. Hydrobiologia 548, 191205.Google Scholar
Kádár, E., Costa, V., Santos, R. S. and Lopes, H. ( 2005 c). Behavioural response to the bioavailability of inorganic mercury in the hydrothermal mussel Bathymodiolus azoricus. Journal of Experimental Biology 208, 505513.Google Scholar
Kádár, E., Santos, R. S. and Powell, J. J. ( 2006). Biological factors influencing tissue compartmentalization of trace metals in the deep-sea hydrothermal vent bivalve Bathymodiolus azoricus at geochemically distinct vent sites of the Mid-Atlantic Ridge. Environmental Research. DOI:10.1016/j.envres.2005.08.010 (in the Press).CrossRef
Langmuir, C., Humphris, S., Fornari, D., Van-Dover, C., Von-Damm, K., Tivey, M. K., Colodner, D., Charlou, J. L., Desonie, D., Wilson, C., Fouquet, Y., Klinkhammer, G. and Bougault, H. ( 1997). Hydrothermal vents near a mantle hot spot: the Lucky Strike vent field at 37 degrees N on the Mid-Atlantic Ridge. Earth and Planetary Science Letters 148, 6991.CrossRefGoogle Scholar
Lucas, J. M., Vaccaro, E. and Waite, J. H. ( 2002). A molecular, morphometric and mechanical comparison of the structural elements of byssus from Mytilus edulis and M. galloprovincialis. Journal of Experimental Biology 205, 18071817.Google Scholar
Moreira, D. and Lopez-Garcia, P. ( 2003). Are hydrothermal vents oases for parasitic protists? Trends in Parasitology 19, 556558.Google Scholar
Papov, V. V., Diamond, T. V., Biemann, K. and Waite, H. J. ( 1995). Hydroxyarginine-containing polyphenolic proteins in the adhesive plaques of the marine mussel Mytilus edulis. The Journal of Biological Chemistry 270, 2018320192.CrossRefGoogle Scholar
Powell, E.N, Barber, R. D., Kennicutt, M. C. and Ford, S. E. ( 1999). Influence of parasitism in controlling the health, reproduction and PAH body burden of petroleum seep mussels. Deep-Sea Research Part I-Oceanographic Research Papers 46, 20532078.CrossRefGoogle Scholar
Qin, X. and Waite, J. H. ( 1995). Exotic collagen gradients in the byssus of the mussle Mytilus edulis. Journal of Experimental Biology 198, 633644.Google Scholar
Von Cosel, R., Comtet, T. and Krylova, E. M. ( 1999). Bathymodiolus (Bivalvia: Mytilidae) from hydrothermal vents on the Azores Triple Junction and the Logatchev hydrothermal field, Mid-Atlantic Ridge. Veliger 42, 218248.Google Scholar
Ward, M. E., Shields, J. D. and Van Dover, C. L. ( 2004). Parasitism in species of Bathymodiolus (Bivalvia: Mytilidae) mussels from deep sea seep and hydrothermal vents. Diseases of Aquatic Organisms 62, 116.CrossRefGoogle Scholar