Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T00:27:57.596Z Has data issue: false hasContentIssue false

Suppression of Trypanosoma congolense, T. vivax and T. brucei infection rates in tsetse flies maintained on goats immunized with uncoated forms of trypanosomes grown in vitro

Published online by Cambridge University Press:  06 April 2009

M. Murray
Affiliation:
International Laboratory for Research on Animal Diseases (ILRAD), P.O. Box 30709, Nairobi, Kenya
H. Hirumi
Affiliation:
International Laboratory for Research on Animal Diseases (ILRAD), P.O. Box 30709, Nairobi, Kenya
S. K. Moloo
Affiliation:
International Laboratory for Research on Animal Diseases (ILRAD), P.O. Box 30709, Nairobi, Kenya

Extract

Significant suppression in the incidence of cyclical development of Trypanosonia congolense, T. vivax and T. brucei occurred in Glossina morsitans centralis maintained on goats immunized with in vitro-propagated uncoated forms of T. congolense, T. vivax and T. brucei, respectively. This was observed when tsetse given a T. congolense-infected feed were subsequently maintained on uninfected immunized goats and also when uninfected tsetse were fed on immunized goats infected with T. congolense, T. vivax and T. brucei. Suppression of infection rates in tsetse was trypanosome species specific, but was independent of the trypanosome stock used for immunization of goats. These findings were reflected in antibody responses to uncoated trypanosomes, as measured by immunofluorescence and the solid-phase immuno radiometric binding assay. Thus, antibody from goats immunized with uncoated trypano somes of one species exhibited minimal reactivity with uncoated forms of other species of trypanosomes, but showed high levels of activity with uncoated forms of the same or unrelated stocks of the same species. However, in view of the range of hosts upon which tsetse feed, it is open to question whether the use of a vaccine which suppresses trypanosome infection rates in tsetse would have any significant effect in the field.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barry, J. D. & Vickerman, K. (1979). Trypanosoma brucei: loss of variable antigens during transformation from bloodstream to procyclic forms in vitro. Experimental Parasilology 48, 313–24.CrossRefGoogle ScholarPubMed
Black, S. J., Hewett, R. S. & Sendashonga, C. N. (1982). Trypanosorna brucei variable surface antigen is released by degenerating parasites but not actively dividing parasites. Parasite immunology 4, 233–44.CrossRefGoogle Scholar
Carter, R. & Chen, D. H. (1976). Malaria transmission blocked by immunisation with gametes of the malaria parasite. Nature, London 263, 5760.CrossRefGoogle ScholarPubMed
Cunningham, M. P., Harley, J. M. B., Southon, H. A. W. & Lumsden, W. H. R. (1962). Detection of antibodies in bloodmeals of haernotophagous Diptera. Science 138, 32–3.CrossRefGoogle Scholar
Geigy, R. & Kauffmann, M. (1973). Sleeping sickness survey in the Serengeti Area (Tanzania) 1971. I. Examination of large mammals for trypanosomes. Acta tropica 30, 1223.Google ScholarPubMed
Gwadz, R. W. (1976). Malaria: successful immunisation against the sexual stages of Piasmodium gallinaceum. Science 193, 1150–1.CrossRefGoogle Scholar
Gwadz, R. W. & Green, I. (1978). Malaria imrnunisation in Rhesus monkeys. A vaccine effective against both the sexual and asexual stages of Plasmodium knowlesi. Journal of Experimental Medicine 148, 1311–23.CrossRefGoogle ScholarPubMed
Hirumi, H., Doyle, J. J. & Hirumi, K. (1977). African trypanosomes: Cultivation of animal-infective Trypanosoma brucei in vitro. Science 196, 992–4.CrossRefGoogle ScholarPubMed
Hirumi, H., Hirumi, K., Doyle, J. J. & Cross, G. A. M. (1980). In vitro cloning of animal-infective bloodstream forms of Trypanosonia brucei. Parasitology 80, 371–82.CrossRefGoogle ScholarPubMed
Hirumi, H., Hirumi, K., Nelson, R. T. & Bwayo, J. J. (1980). Present status of the cultivation of African trypanosomes. In WHO, The in Vitro Cultivation of the Pathogens of Tropical Diseases, pp. 165200. Basel: Schwabe & Co., AG.Google Scholar
Hirumi, H., Nelson, R. T. & Hirumi, K. (1983). Complete cyclic development of Trypanosonia vivax in vitro. Journal of Protozoology 30, 6 A.Google Scholar
Leeflang, P., Buys, J. & Blotkamp, C. (1976). Studies on Trypanosoma vivax. I. The infectivity and serial maintenance of natural bovine isolates in mice. International Journal for Parasitology 6, 413–17.CrossRefGoogle ScholarPubMed
Lowry, O. H., Rosebrough, M. J., Farr, A. & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193, 265–75.CrossRefGoogle ScholarPubMed
Maudlin, I., Turner, M. J., Dukes, P. & Miller, N. (1984). Maintenance of Glossina morsitans morsitans on antiserum to procyclic trypanosoines reduces infection rates with homologous and heterologous Trypanosoma congolense stocks. Acta tropica 41, 253–7.Google ScholarPubMed
Mendis, K. N. & Targett, G. A. T. (1979). Immunisation against gametes and asexual erythrocyte stages of a rodent malaria parasite. Nature, London 227, 389–91.CrossRefGoogle Scholar
Mendis, K. N. & Targett, G. A. T. (1982). Vaccination to prevent transmission of Plasmodium yoelii malaria. Parasite Immunology 4, 117–27.CrossRefGoogle ScholarPubMed
Moloo, S. K. (1981). Effects of maintaining Glossina morsitans morsitans on different hosts upon the vectors subsequent infection rates with pathogenic trypanosomes. Ada tropica 38, 125–36.Google ScholarPubMed
Murray, M., Barry, J. D., Morrison, W. I., Williams, R. O., Hirumi, H. & Rovis, L. (1980). A review of the prospects for vaccination in African trypanosomiasis – part II. World Animal Review 33, 1418.Google Scholar
Murray, M., Moloo, S. K., Hirumi, K., Par, F., Hinson, C. A. & Hirumi, H. (1982). Reduction of trypanosome infection in tsetse flies by antibodies raised against procyclic forms of Trypanosoma congolense. In Parasites – Their World and Ours, vol. 2 (ed. Mettrick, D. F. and Desser, S. S.), Fifth International Congress of Parasitology, Toronto, Canada, 1982, p. 103.Google Scholar
Oi, V. T. & Herzenberg, L. A. (1980). Immunoglobulin-producing hybrid cell lines. In Selected Met hods in Cellular immunology (ed. Mischell, B. B. and Shiigi, S. M.), pp. 351372. San Francisco: W. H. Freeman & Co.Google Scholar
Parish, N. M., Morrison, W. I. & Pearson, T. W. (1985). Identification of an antigen specific to Trypanosoma congolense by using monoclonal antibodies. Journal of Immunology 134, 593–7.CrossRefGoogle ScholarPubMed
Seed, J. R. (1964). Antigenic similarity among culture forms of the brucei group of trypanosomes. Parasitology 54, 593–6.CrossRefGoogle ScholarPubMed
Tsu, T. T. & Herzenberg, L. A. (1980). Solid-phase radioimmune assays. In Selected Methods in Cellular Immunology (ed. Mischell, B. B. and Shiigi, S. M.), pp.373397. San Francisco: W. H. Freeman & Co.Google Scholar
Vickerman, K. (1969). On the surface coat and flagellar adhesion in trypanosomes. Journal of Cell Science 5, 163–94.CrossRefGoogle ScholarPubMed