Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T16:13:42.741Z Has data issue: false hasContentIssue false

Superoxide dismutase (SOD) activity of Dictyocaulus viviparus and its inhibition by antibody from infected and vaccinated bovine hosts

Published online by Cambridge University Press:  06 April 2009

C. Britton
Affiliation:
Wellcome Laboratories for Experimental Parasitology, University of Glasgow, UK
D. P. Knox
Affiliation:
Moredun Research Institute, Edinburgh, UK
M. W. Kennedy
Affiliation:
Wellcome Laboratories for Experimental Parasitology, University of Glasgow, UK

Summary

The presence of superoxide dismutase (SOD) activity in the bovine lungworm Dictyocaulus viviparus was examined using the xanthine–xanthine oxidase assay system and by non-denaturing PAGE followed by specific enzyme staining. High levels of activity were detected in excretory–secretory (ES) products of adult worms and in soluble extracts of both the L3 and adult stages of the parasite. Stage-specific and ES-specific activities were indicated by differences in SOD isoenzyme profiles between adult and larval parasite extracts and between adult extract and ES products, with a fast migrating activity being specific to ES products. All isoenzymes were sensitive to cyanide, indicating copper/zinc dependency. The antigenicity of ES SOD was demonstrated by a reduction in SOD activity in both the chemical assay and non-denaturing PAGE following incubation of parasite ES products with IgG antibody purified from serum of infected or vaccinated bovine hosts. The high level of SOD activity released by adult D. viviparus may be a reflection of the problems faced by a parasite occupying an oxygen-rich environment. Antibody inhibition of SOD may, therefore, be an important target of protective immunity.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Babior, B. M. (1973). The respiratory burst oxidase. Trends in Biological Sciences 12, 241–3.CrossRefGoogle Scholar
Badwey, J. A. & Karnovsy, M. L. (1980). Active oxygen species and the functions of phagocytic leukocytes. Annual Review of Biochemistry 49, 695726.CrossRefGoogle ScholarPubMed
Batra, S., Singh, S. P., Gupta, S., Katiyar, J. C. & Srivastava, v. M. L. (1990). Reactive oxygen intermediate metabolising enzymes in Ancylostoma caninum and Nippostrongylus brasiliensis. Free Radical Biology and Medicine 8, 271–4.CrossRefGoogle Scholar
Beauchamp, C. O. & Fridovich, i. (1971). Superoxide dismutase:improved assays and assay application to polyacrylamide gels. Analytical Biochemistry 44, 276–87.CrossRefGoogle Scholar
Britton, C., Knox, D. P., Canto, G. J., Urquhart, G. M. & Kennedy, M. W. (1992). The secreted and somatic proteinases of the bovine lungworm Dictyocaulus viviparus and their inhibition by antibody from infected and vaccinated animals. Parasitology 105, 325–33.CrossRefGoogle ScholarPubMed
Britton, C., Canto, G. J., Urquhart, G. M. & Kennedy, M. W. (1993 a). Characterisation of excretory–secretory products of adult Dictyocaulus viviparus and the antibody response to them in infection and vaccination. Parasite Immunology 15, 163–74.CrossRefGoogle ScholarPubMed
Britton, C., Canto, G. J., Urquhart, G. M. & Kennedy, M. W. (1993 b). Stage-specific surface antigens of the cattle lungworm Dictyocaulus viviparus. Parasite Immunology 15, 625–34.CrossRefGoogle ScholarPubMed
Callahan, H. L., Crouch, R. K. & James, E. R. (1988). Helminth anti-oxidant enzymes: a protective mechanism against host oxidants? Parasitology Today 4, 218–25.CrossRefGoogle ScholarPubMed
Canto, G. J. (1990). Immunity to Dictyocaulus viviparus infection. Ph.D. thesis, University of Glasgow, UK.Google Scholar
Cookson, E., Blaxter, M. L. & Selkirk, M. E. (1992). Identification of the major soluble cuticular glycoprotein of lymphatic filarial nematode parasites (gp29) as a secretory homolog of glutathione peroxidase. Proceedings of the National Academy of Sciences, USA 89, 5837–41.CrossRefGoogle ScholarPubMed
Cordeiro Da Silva, A., Lepresle, T., Capron, A. & Pierce, R. J. (1992). Molecular cloning of a 16-kilodalton Cu/Zn superoxide dismutase from Schistosoma mansoni. Molecular and Biochemical Parasitology 52, 275–8.CrossRefGoogle Scholar
Docampo, R. & Moreno, S. N. J. (1984). Free-radical intermediates in the antiparasitic action of drugs and phagocytic cells. In Free Radicals in Biology, Vol. 6 (ed. Pryor, W. A.), pp. 243288. Toronto: Academic Press.CrossRefGoogle Scholar
Fairfield, A. S., Meshnick, S. H. & Eaton, J. W. (1983). Malaria parasites adopt host cell superoxide dismutase. Science 221, 764–6.CrossRefGoogle ScholarPubMed
Henkle, K. J., Liebau, E., Muller, S., Bergmann, B. & Walter, R. D. (1991). Characterization and molecular cloning of a Cu/Zn superoxide dismutase from the human parasite Onchocerca volvulus. Infection and Immunity 59, 2063–9.CrossRefGoogle ScholarPubMed
Hong, Z., Loverde, P. T., Hammarskjold, M.-L. & Rekosh, D. (1992). Schistosoma mansoni: cloning of a complementary DNA encoding a cytosolic Cu/Zn superoxide dismutase and high-yield expression of the enzymatically active gene product in Escherichia coli. Experimental Parasitology 75, 308–22.CrossRefGoogle ScholarPubMed
Jarrett, W. F. H., Jennings, F. W., Mcintyre, W. I. M., Mulligan, W. & Urquhart, G. M. (1955). Immunological studies on Dictyocaulus viviparus infection. Passive immunisation. Veterinary Record 67, 291–6.Google Scholar
Jarrett, W. F. H., Mcintyre, W. I. M. & Urqijhart, G. M. (1957). The pathology of experimental bronchitis. Journal of Pathological Bacteriology 73, 183–93.CrossRefGoogle Scholar
Jarrett, W. F. H., Jennings, F. W., Mcintyre, W. I. M., Mulligan, W., Sharp, N. C. C. & Urquhaht, G. M. (1960 a). BVA Congress Symposium on Husk. I. The disease process. Veterinary Record 72, 1066–8.Google Scholar
Jahrett, W. F. H., Jennings, F. W., Mcintyre, W. I. M., Mulligan, W. & Urquhart, G. M. (1960 b). Immunological studies on Dictyocaulus viviparus infection. Immunity produced by administration of irradiated larvae. Immunology 3, 145–51.Google Scholar
Jones, D. G. & Suttle, N. F. (1981). Some effects of copper deficiency on leukocyte function in sheep and cattle. Research in Veterinary Science 31, 151–6.CrossRefGoogle ScholarPubMed
Kennedy, M. W. & Qureshi, F. (1986). Stage-specific secreted antigens of the parasitic larval stages of the nematode Ascaris. Immunology 58, 515–22.Google ScholarPubMed
Knox, D. P. & Jones, D. G. (1992). A comparison of superoxide dismutase (SOD, EC 1.15.1.1) distribution in gastro-intestinal nematodes. International Journal for Parasitology 22, 209–14.CrossRefGoogle ScholarPubMed
Leid, R. W. & Suquet, C. M. (1986). A superoxide dismutase of metacestodes of Taenia taeniaeformis. Molecular and Biochemical Parasitology 18, 301–11.CrossRefGoogle ScholarPubMed
Mccord, J. M., Keele, B. B. Jr & Fridovich, I. (1971). An enzyme-based theory of obligate anaerobiosis. The physiological function of superoxide dismutase. Proceedings of the National Academy of Sciences, USA 68, 1024–7.CrossRefGoogle ScholarPubMed
Mckeand, J. B. (1992). Aspects of the immunobiology of Dictyocaulus viviparus infection. Ph.D. thesis, University of Glasgow, UK.Google Scholar
Mkoji, G. M., Smith, J. M. & Prichard, R. K. (1988). Antioxidant systems in Schistosoma mansoni: correlation between susceptibility to oxidant killing and the levels of scavengers of hydrogen peroxide and oxygen free radicals. International Journal for Parasitology 18, 661–6.CrossRefGoogle ScholarPubMed
Nathan, C. A. (1983). Mechanisms of macrophage antimicrobial activity. Transactions of the Royal Society of Tropical Medicine and Hygiene 77, 620–30.CrossRefGoogle ScholarPubMed
Rhoads, M. L. (1983). Trichinella spiralis: identification and purification of superoxide dismutase. Experimental Parasitology 56, 4154.CrossRefGoogle ScholarPubMed
Rubin, R. & Weber, T. B. (1955). Acquired resistance to Dictyocaulus viviparus, the lungworm of cattle. Preliminary report. Proceedings of the Helminthological Society of Washington 22, 124–9.Google Scholar
Sanchez-Moreno, M., Leon, P., Monteoliva, M. & Garcia-Ruiz, M. A. (1988 a). Superoxide dismutase activity in extracts of specimens of Ascaris suum and several analogous tissues of both sexes. Comparative Biochemistry and Physiology 89B, 521–3.Google ScholarPubMed
Sanchez-Moheno, M., Monteoliva, M., Fatou, A. & Garcia-Ruiz, M. A. (1988 b). Superoxide dismutase from Ascaris suum. Parasitology 97, 345–53.CrossRefGoogle Scholar
Simurda, M. C., Keulen, H., Van Rekosh, D. M. & Loverde, P. T. (1988). Schistosoma mansoni:identification and analysis of an mRNA and a gene encoding superoxide dismutase (Cu/Zn). Experimental Parasitology 67, 7384.CrossRefGoogle Scholar
Taylor, J. B., Vidal, A., Torpier, C., Meyer, D. J., Roitsch, C., Balloul, J.-M., Southan, C., Sondehmeyeh, P., Pemble, S., Lecocq, J.-P., Caphon, A. & Ketteher, B. (1988). The glutathione transferase activity and tissue distribution of a cloned M r 28 K protective antigen of Schistosoma mansoni. EMBO Journal 7, 465–72.CrossRefGoogle Scholar
Towbin, H., Staehelin, T. & Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets. Proceedings of the National Academy of Sciences, USA 76, 4350–4.CrossRefGoogle ScholarPubMed