Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-24T02:38:13.027Z Has data issue: false hasContentIssue false

Specific sites in the Beta Interaction Domain of a schistosome Ca2+ channel β subunit are key to its role in sensitivity to the anti-schistosomal drug praziquantel

Published online by Cambridge University Press:  17 October 2003

A. B. KOHN
Affiliation:
Whitney Laboratory, University of Florida, 9505 Ocean Shore Boulevard, St Augustine, FL 32080, USA
J. M. ROBERTS-MISTERLY
Affiliation:
Whitney Laboratory, University of Florida, 9505 Ocean Shore Boulevard, St Augustine, FL 32080, USA
P. A. V. ANDERSON
Affiliation:
Whitney Laboratory, University of Florida, 9505 Ocean Shore Boulevard, St Augustine, FL 32080, USA Department of Neuroscience, University of Florida, 9505 Ocean Shore Boulevard, St Augustine, FL 32080, USA Department of Physiology and Functional Genomics, University of Florida, 9505 Ocean Shore Boulevard, St Augustine, FL 32080, USA
N. KHAN
Affiliation:
Whitney Laboratory, University of Florida, 9505 Ocean Shore Boulevard, St Augustine, FL 32080, USA
R. M. GREENBERG
Affiliation:
Whitney Laboratory, University of Florida, 9505 Ocean Shore Boulevard, St Augustine, FL 32080, USA Department of Neuroscience, University of Florida, 9505 Ocean Shore Boulevard, St Augustine, FL 32080, USA Department of Pathobiology, University of Florida, 9505 Ocean Shore Boulevard, St Augustine, FL 32080, USA

Abstract

Praziquantel, the drug of choice against schistosomiasis, disrupts calcium (Ca2+) homeostasis in schistosomes via an unknown mechanism. Voltage-gated Ca2+ channels are heteromultimeric transmembrane protein complexes that contribute to impulse propagation and also regulate intracellular Ca2+ levels. β subunits modulate the properties of the pore-forming α1 subunit of high voltage-activated Ca2+ channels. Unlike other Ca2+ channel β subunits, which have current stimulatory effects, a β subunit subtype found in S. mansoni (SmβA) and S. japonicum (Sjβ) dramatically reduces current levels when co-expressed with Ca2+ channel α1 subunits in Xenopus oocytes. It also confers praziquantel sensitivity to the mammalian Cav2.3 α1 subunit. The Beta Interaction Domains (BIDs) of SmβA and Sjβ lack 2 conserved serines that each constitute a consensus site for protein kinase C (PKC) phosphorylation. Here, we use site-directed mutagenesis of schistosome β subunits to show that these unique functional properties are correlated with the absence of these consensus PKC sites in the BID. Furthermore, a second schistosome β subunit subtype contains both serines in the BID, enhances currents through α1 subunits, and does not confer praziquantel sensitivity. Thus, phosphorylation sites in the BID may play important roles in defining the modulatory properties and pharmacological sensitivities of schistosome Ca2+ channel β subunits.

Type
Research Article
Copyright
2003 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

ANDREWS, P. (1985). Praziquantel: mechanisms of anti-schistosomal activity. Pharmacology and Therapeutics 29, 129156.CrossRefGoogle Scholar
BIRNBAUMER, L., QIN, N., OLCESE, R., TAREILUS, E., PLATANO, D., COSTANTIN, J. & STEFANI, E. (1998). Structures and functions of calcium channel subunits. Journal of Bioenergetics and Biomembranes 30, 357375.CrossRefGoogle Scholar
BOURINET, E., ZAMPONI, G. W., STEA, A., SOONG, T. W., LEWIS, B. A., JONES, L. P., YUE, D. T. & SNUTCH, T. P. (1996). The α1E calcium channel exhibits permeation properties similar to low-voltage-activated calcium channels. Journal of Neuroscience 16, 49834993.Google Scholar
CATTERALL, W. A. (2000). Structure and regulation of voltage-gated Ca2+ channels. Annual Review of Cell and Developmental Biology 16, 521555.CrossRefGoogle Scholar
DAY, T. A., BENNETT, J. L. & PAX, R. A. (1992). Praziquantel: the enigmatic antiparasitic. Parasitology Today 8, 342344.CrossRefGoogle Scholar
DEWAARD, M. D., PRAGNELL, M. & CAMPBELL, K. P. (1994). Ca2+ channel regulation by a conserved β subunit domain. Neuron 13, 495503.CrossRefGoogle Scholar
HANLON, M. R. & WALLACE, B. A. (2002). Structure and function of voltage-dependent ion channel regulatory β subunits. Biochemistry 41, 28862894.CrossRefGoogle Scholar
HOFMANN, F., LACINOVA, L. & KLUGBAUER, N. (1999). Voltage-dependent calcium channels: from structure to function. Reviews of Physiology, Biochemistry, and Pharmacology 139, 3387.CrossRefGoogle Scholar
JEZIORSKI, M. C., GREENBERG, R. M. & ANDERSON, P. A. V. (1999). Cloning and expression of a jellyfish calcium channel β subunit reveal functional conservation of the α1-β interaction. Receptors and Channels 6, 375386.Google Scholar
JEZIORSKI, M. C., GREENBERG, R. M. & ANDERSON, P. A. V. (2000). Calcium channel β subunits differentially modulate recovery of the channel from inactivation. FEBS Letters 483, 125130.CrossRefGoogle Scholar
JONES, L. P., WEI, S.-K. & YUE, D. T. (1998). Mechanism of auxiliary subunit modulation of neuronal α1E calcium channels. Journal of General Physiology 112, 125143.CrossRefGoogle Scholar
KAMP, T. J. & HELL, J. W. (2000). Regulation of cardiac L-type calcium channels by protein kinase A and protein kinase C. Circulation Research 87, 10941102.CrossRefGoogle Scholar
KEEF, K. D., HUME, J. R. & ZHONG, J. (2001). Regulation of cardiac and smooth muscle Ca2+ channels (Cav1.2a,b) by protein kinases. American Journal of Physiology: Cell Physiology 281, C1743C1755.Google Scholar
KOHN, A. B., ANDERSON, P. A. V., ROBERTS-MISTERLY, J. M. & GREENBERG, R. M. (2001 a). Schistosome calcium channel β subunits: unusual modulatory effects and potential role in the action of the antischistosomal drug praziquantel. Journal of Biological Chemistry 276, 3687336876.Google Scholar
KOHN, A. B., LEA, J. M., ROBERTS-MISTERLY, J. M., ANDERSON, P. A. V. & GREENBERG, R. M. (2001 b). Structure of three high voltage-activated Ca2+ channel α1 subunits from Schistosoma mansoni. Parasitology 123, 489497.Google Scholar
KUMAR, S., TAMURA, K., JAKOBSEN, I. B. & NEI, M. (2001). MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17, 12441245.CrossRefGoogle Scholar
MATZ, M. V. (2002). Amplification of representative cDNA samples from microscopic amounts of invertebrate tissue to search for new genes. In GFP: Methods in Molecular Biology (ed. Hicks, U. B. W.), pp. 318. Humana Press, Totowa.CrossRef
OLCESE, R., QIN, N., SCHNEIDER, T., NEELY, A., WEI, X., STEFANI, E. & BIRNBAUMER, L. (1994). The amino terminus of a calcium channel β subunit sets rates of channel inactivation independently of the subunit's effect on activation. Neuron 13, 14331438.CrossRefGoogle Scholar
PURI, T. S., GERHARDSTEIN, B. L., ZHAO, X.-L., LADNER, M. B. & HOSEY, M. M. (1997). Differential effects of subunit interactions on protein kinase A- and C-mediated phosphorylation of L-type calcium channels. Biochemistry 36, 96059615.CrossRefGoogle Scholar
REDMAN, C. A., ROBERTSON, A., FALLON, P. G., MODHA, J., KUSEL, J. R., DOENHOFF, M. J. & MARTIN, R. J. (1996). Praziquantel: an urgent and exciting challenge. Parasitology Today 12, 1420.CrossRefGoogle Scholar
ROSSIE, S. (1999). Regulation of voltage-sensitive sodium and calcium channels by phosphorylation. Advances in Second Messenger and Phosphorylation Research 33, 2348.CrossRefGoogle Scholar
TAREILUS, E., ROUX, M., QIN, N., OLCESE, R., ZHOU, J., STEFANI, E. & BIRNBAUMER, L. (1997). A Xenopus oocyte β subunit: evidence for a role in the assembly/expression of voltage-gated calcium channels that is separate from its role as a regulatory subunit. Proceedings of the National Academy of Sciences, USA 94, 17031708.CrossRefGoogle Scholar
THOMPSON, J. D., HIGGINS, D. G. & GIBSON, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 46734680.CrossRefGoogle Scholar
WALKER, D. & DEWAARD, M. (1998). Subunit interaction sites in voltage-dependent Ca2+ channels: role in channel function. Trends in Neuroscience 21, 148154.CrossRefGoogle Scholar
WU, L. G., BORST, J. G. & SAKMANN, B. (1998). R-type Ca2+ currents evoke transmitter release at a rat central synapse. Proceedings of the National Academy of Sciences, USA 95, 47204725.CrossRefGoogle Scholar