Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T10:14:04.909Z Has data issue: false hasContentIssue false

Spatial variation in gender-biased parasitism: host-related, parasite-related and environment-related effects

Published online by Cambridge University Press:  16 June 2010

BORIS R. KRASNOV*
Affiliation:
Mitrani Department of Desert Ecology, Institute for Dryland Environmental Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, 84990 MidreshetBen-Gurion, Israel
SONJA MATTHEE
Affiliation:
Department of Conservation Ecology and Entomology, Private Bag X1, Stellenbosch University, 7602, South Africa
*
*Corresponding author: Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, 84990 MidreshetBen-Gurion, Israel. Tel: +972 8 6596841. Fax: +972 8 6596772. E-mail: [email protected]

Summary

The gender-biased pattern of parasite infestation has been shown to be a complicated phenomenon that cannot be explained by a single mechanism but rather involves several different mechanisms. We asked what are the factors that affect the manifestation and extent of gender-biased parasitism and studied the relationship between parasite-related (mean abundance, mean species richness and total species richness of all parasites), host-related (rodent density and proportion of reproductive males and females both separately and together) and environment-related (mean daily maximal and minimal temperatures, rainfall and relative humidity) factors and the magnitude of gender-biased infestation of a South African rodent Rhabdomys pumilio by ixodid ticks, gamasid mites, lice and fleas. We found that spatial variation in gender differences in parasite infestation was affected by parasite-, host- and environment-related factors, although the set of factors affecting gender differences in infestation differed among higher taxa of ectoparasites. Gender differences in infestation by fleas and lice were affected mainly by parasite-related factors, whereas gender differences in infestation by ticks and, in part, by mites were affected mainly by host-related and environmental factors. In addition, spatial variation in most measures of gender difference in mite infestation remained unexplained.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baron, R. W. and Weintraub, J. (1987). Immunological responses to parasitic arthropods. Parasitology Today 3, 7782.CrossRefGoogle ScholarPubMed
Brandt, C. A. (1992). Social factors in immigration and emigration. In Animal Dispersal: Small Mammals as a Model (ed. Stenseth, N. C. and Jr.Lidicker, W. Z.), pp. 96–141. Chapman & Hall, London, UK.CrossRefGoogle Scholar
Brown, E. D., Macdonald, D. W., Tew, T. E. and Todd, I. A. (1994). Apodemus sylvaticus infected with Heligmosomoides polygyrus (Nematoda) in arable ecosystems: epidemiology and effects of infection on the movement of male mice. Journal of Zoology (London) 234, 623640.CrossRefGoogle Scholar
Bush, A. O. and Holmes, J. C. (1986). Intestinal helminths of lesser scaup ducks: patterns of association. Canadian Journal of Zoology 64, 132141.CrossRefGoogle Scholar
Cockburn, A. (1992). Habitat heterogeneity and dispersal: environmental and genetic patchiness. In Animal Dispersal: Small Mammals as a Model (ed. Stenseth, N. C. and Jr.Lidicker, W. Z.), pp. 6595. Chapman & Hall, London, UK.CrossRefGoogle Scholar
Devevey, G., Chapuisat, M. and Christe, P. (2009). Longevity differs among sexes but is not affected by repeated immune activation in voles (Microtus arvalis). Biological Journal of the Linnean Society 97, 328333.CrossRefGoogle Scholar
Edelman, A. J. and Koprowski, J. L. (2006). Seasonal changes in home ranges of Abert's squirrels: impact of mating season. Canadian Journal of Zoology 84, 404411.CrossRefGoogle Scholar
Folstad, I. and Karter, A. J. (1992). Parasites, bright males, and the immunocompetence handicap. American Naturalist 139, 603622.CrossRefGoogle Scholar
Gauffre, B., Petit, E., Brodier, S., Bretagnolle, V. and Cosson, J. F. (2009). Sex-biased dispersal patterns depend on the spatial scale in a social rodent. Proceedings of the Royal Society of London, B 276, 34873494.Google Scholar
Grear, D. A., Perkins, S. E. and Hudson, P. J. (2009). Does elevated testosterone result in increased exposure and transmission of parasites? Ecology Letters 12, 528537.CrossRefGoogle ScholarPubMed
Greenwood, P. J. (1980). Mating systems, philopatry and dispersal of birds and mammals. Animal Behaviour 28, 11401162.CrossRefGoogle Scholar
Gummer, D. L., Forbes, M. R., Bender, D. J. and Barclay, R. M. R. (1997). Botfly (Diptera: Oestridae) parasitism of Ord's kangaroo rats (Dipodomys ordii) at Suffield National Wildlife Area, Alberta, Canada. Journal of Parasitology 83, 601604.CrossRefGoogle ScholarPubMed
Hillegass, M. A., Waterman, J. M. and Roth, J. D. (2008). The influence of sex and sociality on parasite loads in an African ground squirrel. Behavioral Ecology 19, 10061011.CrossRefGoogle Scholar
Houston, A. I., McNamara, J. M., Barta, Z. N. and Klasing, K. C. (2007). The effect of energy reserves and food availability on optimal immune defence. Proceedings of the Royal Society of London, B 274, 28352842.Google ScholarPubMed
Hughes, V. L. and Randolph, S. E. (2001). Testosterone depresses innate and acquired resistance to ticks in natural rodent hosts: a force for aggregated distributions of parasites. Journal of Parasitology 87, 4954.CrossRefGoogle ScholarPubMed
Irschick, D. J., Gentry, G., Herrel, A. and Vanhooydonck, B. (2006). Effects of sarcophagid fly infestations on green anole lizards (Anolis carolinensis): an analysis across seasons and age/sex classes. Journal of Herpetology 40, 107112.CrossRefGoogle Scholar
Jackson, J. A., Friberg, I. M., Bolch, L., Lowe, A., Ralli, C., Harris, P. D., Behnke, J. M. and Bradley, J. E. (2009). Immunomodulatory parasites and toll-like receptor-mediated tumour necrosis factor alpha responsiveness in wild mammals. BMC Biology 7, 16.CrossRefGoogle ScholarPubMed
Jokela, J., Schmid-Hempel, P. and Rigby, M. C. (2000). Dr. Pangloss restrained by the Red Quinn – steps towards a unified defence theory. Oikos 89, 267274.CrossRefGoogle Scholar
Khokhlova, I. S., Spinu, M., Krasnov, B. R. and Degen, A. A. (2004). Immune response to fleas in a wild desert rodent: Effect of parasite species, parasite burden, sex of host and host parasitological experience. Journal of Experimental Biology 207, 27252733.CrossRefGoogle Scholar
Krasnov, B. R., Khokhlova, I. S., Fielden, L. J. and Burdelova, N. V. (2001 a). The effect of air temperature and humidity on the survival of pre-imaginal stages of two flea species (Siphonaptera: Pulicidae). Journal of Medical Entomology 38, 629637.CrossRefGoogle ScholarPubMed
Krasnov, B. R., Khokhlova, I. S., Fielden, L. J. and Burdelova, N. V. (2001 b). Development rates of two Xenopsylla flea species in relation to air temperature and humidity. Medical and Veterinary Entomology 15, 249258.CrossRefGoogle ScholarPubMed
Krasnov, B. R., Khokhlova, I. S., Fielden, L. J. and Burdelova, N. V. (2002 a). Time to survival under starvation in two flea species (Siphonaptera: Pulicidae) at different air temperatures and relative humidities. Journal of Vector Ecology 27, 7081.Google ScholarPubMed
Krasnov, B. R., Khokhlova, I. S., Fielden, L. J. and Burdelova, N. V. (2002 b). The effect of substrate on survival and development of two species of desert fleas (Siphonaptera: Pulicidae). Parasite 9, 135142.CrossRefGoogle ScholarPubMed
Krasnov, B. R., Matthee, S., Lareschi, M., Koraalo-Vinarskaya, N. P. and Vinarski, M. V. (2010). Co-occurrence of ectoparasites on rodent hosts; null model analyses of data from three continents. Oikos 119, 120128.CrossRefGoogle Scholar
Krasnov, B. R., Morand, S., Hawlena, H., Khokhlova, I. S. and Shenbrot, G. (2005). Sex-biased parasitism, seasonality and sexual size dimorphism in desert rodents. Oecologia 146, 209217.CrossRefGoogle ScholarPubMed
Krasnov, B. R., Stanko, M., Khokhlova, I. S., Mosansky, L., Shenbrot, G. I., Hawlena, H. and Morand, S. (2006 b). Aggregation and species coexistence in fleas parasitic on small mammals. Ecography 29, 159168.CrossRefGoogle Scholar
Krasnov, B. R., Stanko, M. and Morand, S. (2006 a). Are ectoparasite communities structured? Species co-occurrence, temporal variation and null models. Journal of Animal Ecology 75, 13301339.CrossRefGoogle ScholarPubMed
Krichbaum, K., Perkins, S. and Gannon, M. R. (2009). Host-parasite interactions of tropical bats in Puerto Rico. Acta Chiropterologica 11, 157162.CrossRefGoogle Scholar
Lambin, X. (1997). Home range shifts by breeding female Townsend's voles (Microtus townsendii): a test of the territory bequeathal hypothesis. Behavioral Ecology and Sociobiology 40, 363372.CrossRefGoogle Scholar
Marshall, A. G. (1981). The Ecology of Ectoparasitic Insects. Academic Press, London, UK.Google Scholar
Matthee, S., Horak, I. G., Beaucournu, J.-C., Durden, L. A., Ueckermann, E. A. and McGeoch, M. A. (2007). Epifaunistic arthropod parasites of the four-striped mouse, Rhabdomys pumilio, in the Western Cape Province, South Africa. Journal of Parasitology 93, 4759.CrossRefGoogle ScholarPubMed
Matthee, S. and Krasnov, B. R. (2009). Searching for mechanisms of generality in the patterns of parasite abundance and distribution: ectoparasites of a South African rodent, Rhabdomys pumilio. International Journal for Parasitology 39, 781788.CrossRefGoogle Scholar
Matthee, S., McGeoch, M. A. and Krasnov, B. R. (2010). Parasite-specific variation and the extent of male-biased parasitism; an example with a South African rodent and ectoparasitic arthropods. Parasitology 137, 651660.CrossRefGoogle ScholarPubMed
McCurdy, D. G. (1998). Sex-biased parasitism of avian hosts: relations to blood parasite taxon and mating system. Oikos 82, 303312.CrossRefGoogle Scholar
Moore, S. L. and Wilson, K. (2002). Parasites as a viability cost of sexual selection in natural populations of mammals. Science 297, 20152018.CrossRefGoogle ScholarPubMed
Morales-Montor, J., Chavarria, A., De León, M. A., Del Castillo, L. I., Escobedo, E. G., Sánchez, E. N., Vargas, J. A., Hernández-Flores, M., Romo-González, T. and Larralde, C. (2004). Host gender in parasitic infections of mammals: an evaluation of the female host supremacy paradigm. Journal of Parasitology 90, 531546CrossRefGoogle ScholarPubMed
Morand, S., De Bellocq, J. G., Stanko, M. and Miklisová, D. (2004). Is sex-biased ectoparasitism related to sexual size dimorphism in small mammals of Central Europe? Parasitology 129, 505510.CrossRefGoogle ScholarPubMed
Nico de Bruyn, P. J., Bastos, A. D. S., Eadie, C., Tosh, C. A. and Bester, M. N. (2008). Mass mortality of adult male subantarctic fur seals: are alien mice the culprits? PLoS One 3, 11.Google Scholar
Patterson, B. D., Dick, C. W. and Dittmar, K. (2008). Sex biases in parasitism of neotropical bats by bat flies (Diptera: Streblidae). Journal of Tropical Ecology 24, 387396.CrossRefGoogle Scholar
Perrin, M. R., Ercoli, C. and Dempster, E. R. (2001). The role of agonistic behaviour in the population regulation of two syntopic African grassland rodents, the striped mouse Rhabdomys pumilio (Sparrman 1784) and the multimammate mouse Mastomys natalensis (A. Smith 1834) (Mammalia Rodentia). Tropical Zoology 14, 7–29.CrossRefGoogle Scholar
Poulin, R. (1996). Sexual inequalities in helminth infections: a cost of being a male? American Naturalist 14, 287295.CrossRefGoogle Scholar
Radovsky, F. J. (1985). Evolution of mammalian mesostigmatid mites. In Coevolution of Parasitic Arthropods and Mammals (ed. Kim, K. C.), pp. 441504. John Wiley, New York, USA.Google Scholar
Roberts, M. L., Buchanan, K. L. and Evans, M. R. (2004). Testing the immunocompetence handicap hypothesis: a review of the evidence. Animal Behaviour 68, 227239.CrossRefGoogle Scholar
Rossin, A. and Malizia, A. I. (2002). Relationship between helminth parasites and demographic attributes of a population of the subterranean rodent Ctenomys talarum (Rodentia: Octodontidae). Journal of Parasitology 88, 12681270.CrossRefGoogle Scholar
Schalk, G. and Forbes, M. R. (1996). Male bias in parasitism of mammals: effects of study type, host age, and parasite taxon. Oikos 78, 6774.CrossRefGoogle Scholar
Schradin, C. (2004). Territorial defense in a group living solitary forager: who, where, against whom? Behavioral Ecology and Sociobiology 55, 439446.CrossRefGoogle Scholar
Schradin, C. (2005). When to live alone and when to live in groups: ecological determinants of sociality in the African striped mouse (Rhabdomys pumilio, Sparrman, 1784). Belgian Journal of Zoology 135 (Suppl.), 7782.Google Scholar
Schradin, C. (2008). Seasonal changes in testosterone and corticosterone levels in four social classes of a desert dwelling sociable rodent. Hormonal Behaviour 53, 573579.CrossRefGoogle ScholarPubMed
Schradin, C. and Pillay, N. (2004). The striped mouse (Rhabdomys pumilio) from the succulent Karoo, South Africa: a territorial group-living solitary forager with communal breeding and helpers at the nest. Journal of Comparative Psychology 118, 3747.CrossRefGoogle ScholarPubMed
Schradin, C. and Pillay, N. (2005). Intraspecific variation in the spatial and social organization of the African striped mouse. Journal of Mammalogy 86, 99–107.2.0.CO;2>CrossRefGoogle Scholar
Schradin, C. and Pillay, N. (2006). Female striped mice (Rhabdomys pumilio) change their home ranges in response to seasonal variation in food availability. Behavioral Ecology 17, 452458.CrossRefGoogle Scholar
Schradin, C., Scantlebury, M., Pillay, N. and König, B. (2009 b). Testosterone levels in dominant sociable males are lower than in solitary roamers. Physiological differences between three male reproductive tactics in a sociably flexible mammal. American Naturalist 173, 376388.CrossRefGoogle Scholar
Schradin, C., Schneider, C. and Yuen, C. H. (2009 a). Age at puberty in male African striped mice: the impact of food, population density and the presence of the father. Functional Ecology 23, 10041013.CrossRefGoogle Scholar
Soliman, S., Marzouk, A. S., Main, A. J. and Montasser, A. A. (2001). Effect of sex, size, and age of commensal rat hosts on the infestation parameters of their ectoparasites in a rural area of Egypt. Journal of Parasitology 87, 13071316.CrossRefGoogle Scholar
Sonenshine, D. E. (1993). Biology of Ticks, Vol. 2. Oxford University Press, New York, USA.Google Scholar
Tagiltsev, A. A. (1957). On the relationships between parasitic and nidicolous Acari. Medical Parasitology and Parasitic Diseases [Meditsinskaya parazitologiya and parazitarnyye bolezni] 26, 440447 (in Russian).Google Scholar
Tompkins, D. M. and Begon, M. (1999) Parasites can regulate wildlife population. Parasitology Today 15, 311313.CrossRefGoogle Scholar
Walker, J. B. (1991). A review of the ixodid ticks (Acari, Ixodidae) occurring in southern Africa. Onderstepoort Journal of Veterinary Research 58, 81–105.Google ScholarPubMed
Wikel, S. K. and Bergman, D. (1997). Tick-host immunology: Significant advances and challenging opportunities. Parasitology Today 13, 383389.CrossRefGoogle ScholarPubMed
Wirsing, A. J., Azevedo, F. C. C., Lariviere, S. and Murray, D. L. (2007). Patterns of gastrointestinal parasitism among five sympatric prairie carnivores: Are males reservoirs? Journal of Parasitology 93, 504510.CrossRefGoogle ScholarPubMed
Zuk, M. (1996) Disease, endocrine-immune interactions, and sexual selection. Ecology 77, 10371042.CrossRefGoogle Scholar
Zuk, M. and McKean, K. A. (1996) Sex differences in parasite infections: Patterns and processes. International Journal for Parasitology 26, 10091024.CrossRefGoogle ScholarPubMed