Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T09:45:46.888Z Has data issue: false hasContentIssue false

The risk of use small matrices to measure specialization in host–parasite interaction networks: a comment to Rivera-García et al. (2016)

Published online by Cambridge University Press:  31 March 2017

PEDRO LUNA
Affiliation:
Red de Ecoetología, Instituto de Ecología A.C., Xalapa, Veracruz, Mexico
ERICK J. CORRO
Affiliation:
Red de Ecoetología, Instituto de Ecología A.C., Xalapa, Veracruz, Mexico
DIANA A. AHUATZIN-FLORES
Affiliation:
Red de Ecoetología, Instituto de Ecología A.C., Xalapa, Veracruz, Mexico
REUBER L. ANTONIAZZI JR
Affiliation:
Red de Ecoetología, Instituto de Ecología A.C., Xalapa, Veracruz, Mexico
NATHALIA BARROZO
Affiliation:
Red de Ecoetología, Instituto de Ecología A.C., Xalapa, Veracruz, Mexico
EDGAR CHÁVEZ-GONZÁLEZ
Affiliation:
Red de Ecoetología, Instituto de Ecología A.C., Xalapa, Veracruz, Mexico
JUAN J. MORALES-TREJO
Affiliation:
Red de Ecoetología, Instituto de Ecología A.C., Xalapa, Veracruz, Mexico
WESLEY DÁTTILO*
Affiliation:
Red de Ecoetología, Instituto de Ecología A.C., Xalapa, Veracruz, Mexico
*
*Corresponding author. Instituto de Ecología A.C., Red de Ecoetología, Carretera antigua a Coatepec 351, El Haya, CP 91070, Xalapa, Veracruz, Mexico. E-mail: [email protected]; [email protected]

Summary

In the last years, there were a growing number of studies using the metric H2′ to calculate complementary specialization in host–parasite interaction networks. However, only a few studies have explored the sensitivity of H2′ to network dimensions (i.e. species richness and number of interactions), which consequently could generate studies that are not comparable among them or lead to biased conclusions. In this study, we used the recent published study conducted by Rivera-García et al. in 2016 involving host–bat fly networks as an example to call attention to the risk of using H2′ to calculate specialization for small matrices. After conducting analyses based on both empirical and simulated data, we show that H2′ values are strongly affected by randomly allocation of species interactions to another cell in the matrix for small networks and that therefore the results and conclusions presented in Rivera-García et al. in 2016 are only an artefact of the dataset used. Therefore, we fully recommended taking into account the careful use of small networks to measuring specialization in host–parasite interactions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Equally authored paper.

References

REFERENCES

Bellay, S., de Oliveira, E. F., Almeida-Neto, M., Abdallah, V. D., de Azevedo, R. K., Takemoto, R. M. and Luque, J. L. (2015). The patterns of organisation and structure of interactions in a fish-parasite network of a Neotropical river. International Journal for Parasitology 45, 549557.Google Scholar
Blüthgen, N., Menzel, F. and Blüthgen, N. (2006). Measuring specialization in species interaction networks. BMC Ecology 6, id9.CrossRefGoogle ScholarPubMed
Blüthgen, N., Menzel, F., Hovestadt, T., Fiala, B. and Blüthgen, N. (2007). Specialization, constraints, and conflicting interests in mutualistic networks. Current Biology 17, 341346.Google Scholar
Devictor, V., Clavel, J., Julliard, R., Lavergne, S., Mouillot, D., Thuiller, W., Venail, P., Villéger, S. and Mouquet, N. (2010). Defining and measuring ecological specialization. Journal of Applied Ecology 47, 1525.Google Scholar
Dormann, C. F., Fründ, J., Blüthgen, N. and Gruber, B. (2009). Indices, graphs and null models: analyzing bipartite ecological networks. Open Ecology Journal 2, 724.Google Scholar
Gandon, S., Ebert, D., Olivieri, I. and Michalakis, Y. (1997). Differential adaptation in spatially heterogeneous environments and host–parasite coevolution. In Genetic Structure and Local Adaptation in Natural Insect Populations (eds. Mopper, S. and Strauss, S.), pp. 325340. Chapman & Hall, New York, USA.Google Scholar
Hadfield, J. D., Krasnov, B. R., Poulin, R. and Shinichi, N. (2013). A tale of two phylogenies: comparative analyses of ecological interactions. American Naturalist 183, 174187.CrossRefGoogle Scholar
Krasnov, B. R., Fortuna, M. A., Mouillot, D., Khokhlova, I. S., Shenbrot, G. I. and Poulin, R. (2012). Phylogenetic signal in module composition and species connectivity in compartmentalized host–parasite networks. American Naturalist 179, 501511.Google Scholar
Poulin, R. (2010). Network analysis shining light on parasite ecology and diversity. Trends in Parasitology 26, 492498.CrossRefGoogle ScholarPubMed
R Development Core Team (2016). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. www.r-project.org.Google Scholar
Rivera-García, K. D., Sandoval-Ruiz, C. A., Saldaña-Vázquez, R. A. and Schondube, J. E. (2016). The effects of seasonality on host–bat fly ecological networks in a temperate mountain cave. Parasitology (FirstView). doi: 10.1017/S0031182016002390.Google Scholar
Wells, K., Lakim, M. B. and Beaucournu, J. C. (2011). Host specificity and niche partitioning in flea–small mammal networks in Bornean rainforests. Medical and Veterinary Entomology 25, 311319.Google Scholar