Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-10T19:18:10.790Z Has data issue: false hasContentIssue false

Rickettsia-like organisms, puparial temperature and susceptibility to trypanosome infection in Glossina morsitans

Published online by Cambridge University Press:  06 April 2009

S. C. Welburn
Affiliation:
Tsetse Research Laboratory, ODA/University of Bristol, Langford House, Langford, Bristol BS18 7DU
I. Maudlin
Affiliation:
Tsetse Research Laboratory, ODA/University of Bristol, Langford House, Langford, Bristol BS18 7DU

Summary

Maintaining the puparial stage of successive generations of a population of tsetse 3 °C lower than normal reduced the numbers of rickettsia-like organisms (RLO) carried by emerging flies. The susceptibility of these flies to midgut infection with Trypanosoma congolense was also significantly reduced compared with control flies held at normal temperature. These results support the view that the relationship between RLO and susceptibility is quantitative – teneral flies with heavier RLO infections being more susceptible to trypanosome infection.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bowman, I. B. R. & Flynn, I. W. (1976). Oxidative metabolism of trypanosomes. In Biology of the Kinetoplastida (ed. Lumsden, W. H. R. & Evans, D. A.), pp. 435–76. London: Academic Press.Google Scholar
Baker, R. D., Maudlin, I., Milligan, P. M. J., Molyneux, D. H. & Welburn, S. C. (1990). The possible role of Rickettsia-like organisms in trypanosomiasis epidemiology. Parasitology 100, 209–17.CrossRefGoogle ScholarPubMed
Bursell, E. (1981). Energetics of haematophagous arthropods: influence of parasites. Parasitology 82, 107–8.Google Scholar
Bursell, E., Billing, K. C., Hargrove, J. W., McCabe, C. T. & Slack, E. (1974). Metabolism of the bloodmeal in tsetse flies. Acta Tropica 31, 297320.Google ScholarPubMed
Burtt, E. (1946). The sex ratio of infected flies found in transmission-experiments with Glossina morsitans and Trypanosoma rhodesiense. Annals of Tropical Medicine and Parasitology 40, 74–9.CrossRefGoogle ScholarPubMed
Cornelissen, A. W. C. A., Bakkeren, G. A. M., Barry, J. D., Michels, A. M. & Borst, P. (1985). Characteristics of trypanosome variant antigen genes active in the tsetse fly. Nucleic Acids Research 13, 4661–76.CrossRefGoogle ScholarPubMed
Fairburn, H. & Culwick, A. T. (1950). The transmission of the polymorphic trypanosomes. Acta Tropica 7, 1947.Google Scholar
Fairburn, H. & Watson, H. J. C. (1955). The transmission of Trypanosoma vivax by Glossina palpalis. Annals of Tropical Medicine and Parasitology 49, 250–9.CrossRefGoogle Scholar
Ford, J. & Leggate, B. M. (1961). The geographical and climatic distribution of trypanosome infection rates in G. morsitans group of tsetse flies (Glossina Wied., Diptera). Transactions of the Royal Society of Tropical Medicine and Hygiene 55, 383–97.CrossRefGoogle Scholar
Gimenez, D. F. (1964). Staining rickettsiae in yolk-culture. Stain Technology 39, 135–40.CrossRefGoogle Scholar
Glasgow, J. P. (1963). The Distribution and Abundance of Tsetse. Oxford: Pergamon.Google Scholar
Jenni, L. (1977). Comparisons of antigenic types of Trypanosoma (T.) brucei strains transmitted by Glossina m. morsitans. Acta Tropica 34, 3541.Google ScholarPubMed
Le Ray, D. (1989). Vector susceptibility to African trypanosomes. Annales de la Société Belge de Médecine Tropicale 69, Suppl. 1, 165–71.Google ScholarPubMed
Maddox, J. (1989). The biggest greenhouse still intact. Nature, London 338, 111.CrossRefGoogle Scholar
Maudlin, I. (1982). Inheritance of susceptibility to Trypanosoma congolense infection in Glossina morsitans. Annals of Tropical Medicine and Parasitology 76, 225–7.CrossRefGoogle ScholarPubMed
Maudlin, I. & Dukes, P. (1985). Extrachromosomal inheritance of susceptibility to trypanosome infection in tsetse flies 1. Selection of susceptible and refractory lines of Glossina morsitans morsitans. Annals of Tropical Medicine and Parasitology 79, 317–24.CrossRefGoogle ScholarPubMed
Maudlin, I. & Ellis, D. S. (1985). Association between intracellular rickettsial-like infections of midgut cells and susceptibility to trypanosome infection in Glossina spp. Zeitschrift für Parasitenkunde 71, 683–7.CrossRefGoogle ScholarPubMed
Maudlin, I. & Welburn, S. C. (1988). Tsetse immunity and the transmission of trypanosomiasis. Parasitology Today 4, 109–11.CrossRefGoogle ScholarPubMed
Maudlin, I., Welburn, S. C. & Mehlitz, D. (1990). The relationship between rickettsia-like-organisms and trypanosome infections in natural populations of tsetse in Liberia. Tropical Medicine and Parasitology 41, 265–7.Google ScholarPubMed
Maudlin, I., Welburn, S. C. & Milligan, P. (1991) Salivary gland infection: a sex linked recessive character in tsetse? Acta Tropica 48, 915.CrossRefGoogle Scholar
Maudlin, I., Dukes, P., Luckins, A. G. & Hudson, K. M. (1986). Extrachromosomal inheritance of susceptibility to trypanosome infection in tsetse flies. II. Susceptibility of selected lines of Glossina morsitans morsitans to different stocks and species of trypanosome. Annals of Tropical Medicine and Parasitology 80, 97105.CrossRefGoogle ScholarPubMed
Moloo, S. K. & Shaw, M. K. (1989). Rickettsial infections of midgut cells are not associated with susceptibility of Glossina morsitans centralis to Trypanosoma congolense infection. Acta Tropica 46, 223–7.CrossRefGoogle Scholar
Pell, P. E. & Southern, D. I. (1976). Effect of the coccidiostat, sulphaquinoxaline on symbiosis in the tsetse fly, Glossina species. Microbios Letters 2, 203–11.Google Scholar
Rogers, D. J. & Randolph, S. E. (1986). Distribution and abundance of tsetse flies. Journal of Animal Ecology 55, 1007–25.CrossRefGoogle Scholar
Vickerman, K. (1985). Development cycles and biology of pathogenic trypanosomes. British Medical Bulletin 41, 105–14.CrossRefGoogle ScholarPubMed
Welburn, S. C. & Gibson, W. C. (1989). Cloning of a repetitive DNA from the Rickettsia-like organisms of tsetse flies (Glossina spp.). Parasitology 98, 81–4.CrossRefGoogle ScholarPubMed
Welburn, S. C. & Maudlin, I. (1987). A simple in vitro method for infecting tsetse with trypanosomes. Annals of Tropical Medicine and Parasitology 81, 453–5.CrossRefGoogle ScholarPubMed
Welburn, S. C. & Maudlin, I. (1989). Lectin signalling of maturation of T. congolense infections in tsetse. Medical and Veterinary Entomology 3, 141–5.CrossRefGoogle ScholarPubMed
Welburn, S. C. & Maudlin, I. (1990). Haemolymph lectin and the maturation of trypanosome infections in tsetse. Medical and Veterinary Entomology 4, 43–8.CrossRefGoogle ScholarPubMed
Welburn, S. C., Maudlin, I. & Ellis, D. (1987). In vitro cultivation of rickettsia-like-organisms from Glossina spp. Annals of Tropical Medicine and Parasitology 81, 331–5.CrossRefGoogle ScholarPubMed
Welburn, S. C., Maudlin, I. & Ellis, D. (1989). Rate of trypanosome killing by lectins in midguts of different species and strains of Glossina. Medical and Veterinary Entomology 3, 7782.CrossRefGoogle ScholarPubMed
Young, C. J. & Godfrey, D. G. (1983). Enzyme polymorphism and the distribution of Trypanosoma congolense isolates. Annals of Tropical Medicine and Parasitology 77, 467–81.CrossRefGoogle ScholarPubMed