Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-10T19:04:27.409Z Has data issue: false hasContentIssue false

A restriction site to differentiate Plasmodium and Haemoproteus infections in birds: on the inefficiency of general primers for detection of mixed infections

Published online by Cambridge University Press:  06 May 2009

J. MARTÍNEZ*
Affiliation:
Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Alcalá, Alcalá de Henares, E-28871 Madrid, Spain
J. MARTÍNEZ-DE LA PUENTE
Affiliation:
Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales-CSIC, J. Gutiérrez Abascal 2, E-28006 Madrid, Spain
J. HERRERO
Affiliation:
Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Alcalá, Alcalá de Henares, E-28871 Madrid, Spain
S. DEL CERRO
Affiliation:
Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales-CSIC, J. Gutiérrez Abascal 2, E-28006 Madrid, Spain
E. LOBATO
Affiliation:
Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales-CSIC, J. Gutiérrez Abascal 2, E-28006 Madrid, Spain
J. RIVERO-DE AGUILAR
Affiliation:
Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales-CSIC, J. Gutiérrez Abascal 2, E-28006 Madrid, Spain
R. A. VÁSQUEZ
Affiliation:
Instituto de Ecología y Biodiversidad, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
S. MERINO
Affiliation:
Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales-CSIC, J. Gutiérrez Abascal 2, E-28006 Madrid, Spain
*
*Corresponding author: Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Alcalá, Alcalá de Henares, E-28871 Madrid, Spain. Tel: +34 918854636. Fax: +34 918854663. E-mail: [email protected]

Summary

Avian Plasmodium and Haemoproteus parasites are easily detected by DNA analyses of infected samples but only correctly assigned to each genus by sequencing and use of a phylogenetic approach. Here, we present a restriction site to differentiate between both parasite genera avoiding the use of those analyses. Alignments of 820 sequences currently listed in GenBank encoding a particular cytochrome B region of avian Plasmodium and Haemoproteus show a shared restriction site for both genera using the endonuclease Hpy CH4III. An additional restriction site is present in Plasmodium sequences that would initially allow differentiation of both genera by differential migration of digested products on gels. Overall 9 out of 326 sequences containing both potential restriction sites do not fit to the general rule. We used this differentiation of parasite genera based on Hpy CH4III restriction sites to evaluate the efficacy of 2 sets of general primers in detecting mixed infections. To do so, we used samples from hosts infected by parasites of both genera. The use of general primers was only able to detect 25% or less of the mixed infections. Therefore, parasite DNA amplification using general primers to determine the species composition of haemosporidian infections in individual hosts is not recommended. Specific primers for each species and study area should be designed until a new method can efficiently discriminate both parasites.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Beadell, J. S., Gering, E., Austin, J., Dumbacher, J. P., Peirce, M. A., Pratt, T. K., Atkinson, C. T. and Fleischer, R. C. (2004). Prevalence and differential host-specificity of two avian blood parasite genera in the Australo-Papuan region. Molecular Ecology 13, 38293844.CrossRefGoogle ScholarPubMed
Beadell, J. S. and Fleischer, R. C. (2005). A restriction enzyme-based assay to distinguish between avian hemosporidians. Journal of Parasitology 91, 683685.CrossRefGoogle ScholarPubMed
Bensch, S., Stjerman, M., Hasselquist, D., Östman, Ö., Hansson, B., Westerdahl, H. and Torres Pinheiro, R. (2000). Host specificity in avian blood parasites: a study of Plasmodium and Haemoproteus mitochondrial DNA amplified from birds. Proceedings of the Royal Society of London, B 267, 15831589.CrossRefGoogle ScholarPubMed
Bentz, S., Rigaud, T., Barroca, M., Martin-Laurent, F., Bru, D., Moreau, J. and Faivre, B. (2006). Sensitive measure of prevalence and parasitaemia of haemosporidia from European blackbird (Turdus merula) populations: value of PCR-RFLP and quantitative PCR. Parasitology 133, 685692.CrossRefGoogle ScholarPubMed
Durrant, K., Beadell, J. S., Ishtiaq, F., Graves, G. R., Olson, S. L., Gering, E., Peirce, M. A., Milensky, C. M., Schmidt, B. K., Gebhard, C. and Fleischer, R. C. (2006). Avian hematozoa in South America: a comparison of temperate and tropical zones. Ornithological Monographs 60, 98111.CrossRefGoogle Scholar
Fallon, S. M., Ricklefs, R. E., Swanson, B. L. and Bermingham, E. (2003). Detecting avian malaria: an improved polymerase chain reaction diagnostic. Journal of Parasitology 89, 10441047.CrossRefGoogle ScholarPubMed
Feldman, R. A. and Freed, L. A. (1995). A PCR test for avian malaria in Hawaiian birds. Molecular Ecology 4, 663673.CrossRefGoogle ScholarPubMed
Freed, L. A. and Cann, R. L. (2006). DNA quality and accuracy of avian malaria PCR diagnostics: A review. Condor 108, 459473.CrossRefGoogle Scholar
Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 9598.Google Scholar
Hamilton, W. D. and Zuk, M. (1982). Heritable true fitness and bright birds: A role for parasites? Science 218, 384387.CrossRefGoogle Scholar
Krone, O., Waldenström, J., Valkiūnas, G., Lessow, O., Müller, K., Iezhova, T. A., Fickel, J. and Bensch, S. (2008). Haemosporidian blood parasites in European birds of prey and owls. Journal of Parasitology 94, 709715.CrossRefGoogle ScholarPubMed
Martínez-de la Puente, J., Merino, S., Tomás, G., Moreno, J., Morales, J., Lobato, E. and García-Fraile, S. (2007). Can the host immune system promote multiple invasions of erythrocytes in vivo? Differential effects of medication and host sex in a wild malaria-like model. Parasitology 134, 651655.CrossRefGoogle Scholar
Martinsen, E. S., Perkins, S. L. and Schall, J. J. (2008). A three-genome phylogeny of malaria parasites (Plasmodium and closely related genera): Evolution of life-history traits and host switches. Molecular Phylogenetics and Evolution 47, 261273.CrossRefGoogle ScholarPubMed
Marzal, A., Bensch, S., Reviriego, M., Balbontin, J. and de Lope, F. (2008). Effects of malaria double infection in birds: one plus one is not two. Journal of Evolutionary Biology 21, 979987.CrossRefGoogle Scholar
Marzal, A., de Lope, F., Navarro, C. and Møller, A. P. (2005). Malarial parasites decrease reproductive success: an experimental study in a passerine bird. Oecologia 142, 541545.CrossRefGoogle Scholar
Merino, S., Martínez, J., Møller, A. P., Barbosa, A., de Lope, F. and Rodríguez-Caabeiro, F. (2002). Blood stress protein levels in relation to sex and parasitism of barn swallows (Hirundo rustica). Ecoscience 9, 300305.CrossRefGoogle Scholar
Merino, S., Moreno, J., Sanz, J. J. and Arriero, E. (2000). Are avian blood parasites pathogenic in the wild? A medication experiment in blue tits. Proceedings of the Royal Society of London, B 267, 25072510.CrossRefGoogle Scholar
Merino, S., Moreno, J., Vásquez, R. A., Martínez, J., Sánchez-Monsálvez, I., Estades, C. F., Ippi, S., Sabat, P., Rozzi, R. and McGehee, S. (2008). Haematozoa in forest birds from southern Chile: latitudinal gradients in prevalence and parasite lineage richness. Austral Ecology 33, 329340.CrossRefGoogle Scholar
Nordling, D., Andersson, M., Zohari, S. and Gustafsson, L. (1998). Reproductive effort reduces specific immune response and parasite resistance. Proceedings of the Royal Society of London, B 265, 12911298.CrossRefGoogle Scholar
Norris, K., Anwar, M. and Read, A. F. (1994). Reproductive effort influences the prevalence of haematozoan parasites in great tits. Journal of Animal Ecology 63, 601610.CrossRefGoogle Scholar
Pérez-Tris, J. and Bensch, S. (2005). Diagnosing genetically diverse avian malarial infections using mixed-sequences analysis and TA-cloning. Parasitology 131, 1523.CrossRefGoogle Scholar
Pérez-Tris, J., Hasselquist, D., Hellgren, O., Krizanauskiene, A., Waldenström, J. and Bensch, S. (2005). What are malaria parasites? Trends in Parasitology 21, 209211.CrossRefGoogle ScholarPubMed
Perkins, S. L. and Schall, J. J. (2002). A molecular phylogeny of malarial parasites recovered from cytochrome b gene sequences. Journal of Parasitology 88, 972978.CrossRefGoogle ScholarPubMed
Richard, F. A., Sehgal, R. N. M., Jones, H. I. and Smith, T. B. (2002). A comparative analysis of PCR-based detection methods for avian malaria. Journal of Parasitology 88, 819822.CrossRefGoogle ScholarPubMed
Ricklefs, R. E., Fallon, S. M. and Bermingham, E. (2004). Evolutionary relationships, cospeciation, and host switching in avian malaria parasites. Systematic Biology 53, 111119.CrossRefGoogle ScholarPubMed
Ricklefs, R. E., Swanson, B. L., Fallon, S. M., Martínez-Abrain, A., Scheuerlein, A., Gray, J. and Latta, S. C. (2005). Community relationships of avian malaria parasites in southern Missouri. Ecological Monographs 75, 543559.CrossRefGoogle Scholar
Tamura, K., Dudley, J., Nei, M. and Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24, 15961599.CrossRefGoogle ScholarPubMed
Thompson, J. D., Higgins, D. G. and Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 46734680.CrossRefGoogle ScholarPubMed
Tomás, G., Merino, S., Martínez, J., Moreno, J. and Sanz, J. J. (2005). Stress protein levels and blood parasite infection in blue tits (Parus caeruleus): a medication field experiment. Annales Zoologici Fennici 42, 4556.Google Scholar
Tomás, G., Merino, S., Moreno, J., Morales, J. and Martínez-de la Puente, J. (2007). Impact of blood parasites on immunoglobulin level and parental effort: a medication field experiment on a wild passerine. Functional Ecology 2, 125133.CrossRefGoogle Scholar
Valkiūnas, G., Atkinson, C. T., Bensch, S., Sehgal, R. N. and Ricklefs, R. E. (2008). Parasite misidentifications in GenBank: how to minimize their number? Trends in Parasitology 24, 247248.CrossRefGoogle ScholarPubMed
Valkiūnas, G., Bensch, S., Iezhova, T. A., Krizanauskiene, A., Hellgren, O. and Bolshakov, C. V. (2006). Nested cytochrome B polymerase chain reaction diagnostics underestimated mixed infection of avian blood Haemosporidian parasites: microscopy is still essential. Journal of Parasitology 92, 418422.CrossRefGoogle Scholar
Waldenström, J., Bensch, S., Hasselquist, D. and Östman, Ö. (2004). A new nested polymerase chain reaction method very efficient in detecting Plasmodium and Haemoproteus infections from avian blood. Journal of Parasitology 90, 191194.CrossRefGoogle ScholarPubMed