Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-20T03:30:08.383Z Has data issue: false hasContentIssue false

Response of Neobenedenia girellae (Monogenea) oncomiracidia to brightness and black-and-white contrast

Published online by Cambridge University Press:  29 June 2007

M. ISHIDA
Affiliation:
Marine Biological Technology Center, Nippon Suisan Kaisha, Ltd, Saeki, Oita 876-1204, Japan
F. KAWANO
Affiliation:
Marine Biological Technology Center, Nippon Suisan Kaisha, Ltd, Saeki, Oita 876-1204, Japan
N. UMEDA
Affiliation:
Marine Biological Technology Center, Nippon Suisan Kaisha, Ltd, Saeki, Oita 876-1204, Japan
N. HIRAZAWA*
Affiliation:
Central Research Laboratories, Nippon Suisan Kaisha, Ltd, 559-6 Kitanomachi, Hachioji, Tokyo 192-0906, Japan
*
*Corresponding author: Central Research Laboratories, Nippon Suisan Kaisha, Ltd, 559-6 Kitanomachi, Hachioji, Tokyo 192-0906, Japan. Tel: +81 426 56 5195. Fax: +81-426 56 5188. E-mail: [email protected]

Summary

Neobenedenia girellae, a capsalid monogenean, is a significant pathogen due to both its ability to cause high mortality in fishes and its low host specificity. Established control methods have both advantages and disadvantages. Biological control measures with no unfavourable effects on the environment should be incorporated into the control strategy. The response of N. girellae oncomiracidia to brightness and black-and-white contrast was investigated to search for an alternative approach of disease prevention or control. Japanese flounder, Paralichthys olivaceus (Paralichthyidae), were exposed to oncomiracidia in an aquarium divided into areas of different brightness (∼1·3, 41·3 and 138·0 lux). The number of parasites on the fish group reared in 138·0 lux was significantly higher than on those reared in the lower brightness levels. Thus, the fish tended to be more vulnerable to infection by N. girellae under brighter conditions. Challenge trials using host fish mucus and whole live fish were established to detect the response by oncomiracidia to black-and-white contrast on a white versus a black background. Markedly more N. girellae oncomiracidia attached to black-painted areas and dark-coloured fish (normal spotted halibut, Verasper variegatus (Pleuronectidae) compared with white-painted areas and light-coloured fish (mal-coloured V. variegatus) on a white-coloured background. On a black-coloured background, more N. girellae oncomiracidia tended to attach to white-painted areas and light-coloured fish. Thus, black-and-white contrast is considered important for host finding by N. girellae oncomiracidia. The simplicity of the positive phototactic behaviour and the response to black-and-white contrast may lead to the development of a simple, practical and inexpensive method to control N. girellae outbreaks.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bondad-Reantaso, M. G., Ogawa, K., Fukudome, M. and Wakabayashi, H. (1995). Reproduction and growth of Neobenedenia girellae (Monogenea: Capsalidae), a skin parasite of cultured marine fishes of Japan. Fish Pathology 30, 227231.Google Scholar
Bovet, J. (1967). Contribution à la morphologie et à la biologie de Diplozoon paradoxum V. Nordmann, 1832. Bulletin de la Société Neuchâteloise des Sciences naturelles 90, 64159.Google Scholar
Buchmann, K. and Lindenstrøm, T. (2002). Interactions between monogenean parasites and their fish host. International Journal for Parasitology 32, 309319.Google Scholar
Bychowsky, B. E. (1957). Monogenetic Trematodes, their Classification and Phylogeny. Academy of Science, USSR, Moscow and Leningrad. (In Russian.)Google Scholar
Fournier, A. (1976). Evolution des ultrastructures d'un monogène au cours du cycle. Bulletin de la Société zoologique de France 101, 10591060.Google Scholar
Fournier, A. and Combes, C. (1978). Structure of photoreceptors of Polystoma integerrimum (Platyhelminthes, Monogenea). Zoomorphology 91, 147155.Google Scholar
Hatanaka, A., Umeda, N., Yamashita, S. and Hirazawa, N. (2005). A small ciliary surface glycoprotein of the monogenean parasite Neobenedenia girellae acts as an agglutination/immobilization antigen and induces an immune response in the Japanese flounder Paralichthys olivaceus. Parasitology 131, 591600.Google Scholar
Hirano, T. (1998). Marine Coastal Environment. 1st Edn. Fuji Technosystem, Tokyo. (In Japanese.)Google Scholar
Hirazawa, N., Hara, T., Mitsuboshi, T, Okazaki, J. and Hata, K. (1999). Iodophor disinfection of eggs of spotted halibut Verasper variegatus and red sea bream Pagrus major. Fisheries Science 65, 333338.Google Scholar
Hirazawa, N., Mitsuboshi, T., Hirata, T. and Shirasu, K. (2004). Susceptibility of spotted halibut Verasper variegatus (Pleuronectidae) to infection by the monogenean Neobenedenia girellae (Capsalidae) and oral therapy trials using praziquantel. Aquaculture 238, 8395.Google Scholar
Hirazawa, N., Ohtaka, T. and Hata, K. (2000). Challenge trials on the anthelmintic effect of drugs and natural agents against the monogenean Heterobothrium okamotoi in the tiger puffer Takifugu rubripes. Aquaculture 188, 113.CrossRefGoogle Scholar
Hirazawa, N., Oshima, S., Mitsuboshi, T. and Yamashita, S. (2003). Mucus pH of the tiger puffer Takifugu rubripes is an important factor for host identification by the monogenean Heterobothrium okamotoi. Parasitology 127, 225230.Google Scholar
Kanazawa, A. (1993). Nutritional mechanisms involved in the occurrence of abnormal pigmentation in hatchery-reared flatfish. Journal of the World Aquaculture Society 24, 162166.CrossRefGoogle Scholar
Kearn, G. C. (1974). The effect of fish skin mucus on hatching in the monogenean parasite Entobdella soleae from the skin of the common sole, Solea solea. Parasitology 68, 173188.Google Scholar
Kearn, G. C. (1978). Eyes with, and without, pigment shields in the oncomiracidium of the monogenean parasite Diplozoon paradoxum. Zeitschrift für Parasitenkunde 53, 3547.Google Scholar
Kearn, G. C. (1980). Light and gravity responses of the oncomiracidium of Entobdella soleae and their role in host location. Parasitology 81, 7191.Google Scholar
Kearn, G. C. and Baker, N. O. (1973). Ultrastructural and histochemical observations on the pigmented eyes of the oncomiracidium of Entobdella soleae, a monogenean skin parasite of the common sole, Solea solea. Zeitschrift für Parasitenkunde 41, 239254.Google Scholar
Kim, K. H. and Choi, E. S. (1998). Treatment of Microcotyle sebastis (Monogenea) on the gills of cultured rockfish (Sebastes schelegeli) with oral administration of mebendasole and bithinol. Aquaculture 167, 115121.Google Scholar
Kim, K. H., Lee, E. H., Kwon, S. R. and Cho, J. B. (2001). Treatment of Microcotyle sebastis infestation in cultured rockfish Sebastes schlegeli by oral administration of praziquantel in combination with cimetidine. Diseases of Aquatic Organisms 44, 133136.Google Scholar
Ktari, M. H. (1969). Recherches sur l'anatomie et la biologie de Microcotyle salpae Parona et Perugia. 1890 prasite de Box salpa L. (Téléostéen). Annales de Parasitologie Humaine et Comparée 44, 425440.Google Scholar
Kumai, H. (2000). Aquaculture of Marine Fishes. Sobunsha, Tokyo. (In Japanese.)Google Scholar
Leong, T. S. (1997). Control of parasites in cultured marine finfishes in Southeast Asia-an overview. International Journal for Parasitology 27, 11771184.Google Scholar
Ogawa, K., Bondad-Reantaso, M. G., Fukudome, M. and Wakabayashi, H. (1995). Neobenedenia girellae (Hargis, 1955) Yamaguti, 1963 (Monogenea: Capsalidae) from cultured marine fishes of Japan. Journal of Parasitology 81, 223227.Google Scholar
Ogawa, K. and Yokoyama, H. (1998). Parasitic diseases of cultured marine fish in Japan. Fish Pathology 33, 303309.Google Scholar
Okabe, K. (2000). Chemotherapeutic drug (Hada-clean) of oral administrating type to control fish parasites. Doyaku Kenkyu 60, 112. (In Japanese.)Google Scholar
Okada, N., Morita, T. and Tagawa, M. (2005). Thyroid hormone deficiency in abnormal larvae of the Japanese flounder Paralichthys olivaceus. Fisheries Science 71, 107114.CrossRefGoogle Scholar
Paling, J. E. (1969). The manner of infection of trout gills by the monogenean parasite Discocotyle sagittata. Journal of Zoology 159, 293309.Google Scholar
Paperna, I. (1991). Diseases caused by parasites in the aquaculture of warm water fish. Annual Review of Fish Diseases 1, 155194.Google Scholar
Roberts, S. D. and Powell, M. D. (2003 a). Comparative ionic flux and gill mucous cell histochemistry: effect of salinity and disease status in Atlantic salmon (Salmo salar L.). Comparative Biochemistry and Physiology 134(A), 525537.Google Scholar
Roberts, S. D. and Powell, M. D. (2003 b). Reduced total hardness of fresh water enhances the efficacy of bathing as a treatment for amoebic gill disease in Atlantic salmon, Salmo salar L. Journal of Fish Diseases 26, 591599.CrossRefGoogle Scholar
Rohde, K. and Watson, N. A. (1991). Ultrastructure of pigmented photoreceptors of larval Multicotyle purvisi (Trematoda, Aspidogastrea). Parasitology Research 77, 485490.Google Scholar
Sakakura, Y. and Tsukamoto, K. (1997). Effects of seawater temperature and light intensity on aggressive behavior in the juvenile yellowtail. Fisheries Science 63, 4245.CrossRefGoogle Scholar
Venizelos, A. and Benetti, D. D. (1999). Pigment abnormalities of the flatfish. Aquaculture 176, 181188.Google Scholar
Whittington, I. D., Chisholm, L. A. and Rohde, K. (2000). The larvae of Monogenea (Platyhelminthes). Advances in Parasitology 44, 139232.Google Scholar
Whittington, I. D. and Kearn, G. C. (1986). Rhythmical hatching and oncomiracidial behavior in the hexabothriid monogenean Rajonchocotyle emarginata from the gills of Raja spp. Journal of the Marine Biological Association of the United Kingdom 66, 93111.Google Scholar
Whittington, I. D. and Kearn, G. C. (1989). Rapid hatching induced by light intensity reduction in the polypisthocotylen monogenean Plectanocotyle gurnardi from the gills of Gurnards triglidae with observations on the anatomy and behaviour of the oncomiracidium. Journal of the Marine Biological Association of the United Kingdom 69, 609624.Google Scholar
Woo, P. T. K., Bruno, D. W. and Lim, L. H. S. (2002). Diseases and Disorders of Finfish in Cage Culture. CABI Publishing, London.Google Scholar
Yoshinaga, T., Nagakura, T., Ogawa, K. and Wakabayashi, H. (2000). Attachment-inducing capacities of fish tissue extracts on oncomiracidia of Neobenedenia girellae (Monogenea, Capsalidae). Journal of Parasitology 86, 214219.Google Scholar