Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-05T19:33:13.891Z Has data issue: false hasContentIssue false

Respiration and carbohydrate energy metabolism of the lung-dwelling parasite Rhabdias bufonis (Nematoda: Rhabdiasoidea)

Published online by Cambridge University Press:  06 April 2009

A. O. Anya
Affiliation:
Parasitic Nematodes Research Project, Department of Zoology, University of Nigeria, Nsukka, Nigeria
G. M. Umezurike*
Affiliation:
Parasitic Nematodes Research Project, Department of Zoology, University of Nigeria, Nsukka, Nigeria
*
*Department of Biochemistry, University of Nigeria, Nsukka, Nigeria.

Summary

An investigation of the carbohydrate energy metabolism of Rhabdias bufonis, the lung-dwelling nematode parasite of the African toad, Bufo regularis, indicates that the nematode stores very little glycogen (0·137 ± 0·003% on a fresh weight basis) but does utilize oxygen in vitro. The intracellular distribution and high levels of activity observed for the enzymes phosphoenolpyruvate carboxykinase, pyruvate kinase, lactate dehydrogenase, malate dehydrogenase, malic enzyme and fumarate reductase suggest two alternative pathways of carbohydrate energy metabolism.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adam, H. (1965). Adenosine-5′-triphosphate determination with phosphoglycerate kinase. In Methods of Enzymatic Analysis (ed. Bergmeyer, H. U.), pp. 539–43. New York: Academic Press.Google Scholar
Barrett, J. & Beis, I. (1973 a). Studies on glycolysis in the muscle tissue of Ascaris lumbricoides (Nematoda). Comparative Biochemistry and Physiology 44B, 751–61.Google Scholar
Barrett, J. & Beis, I. (1973 b). The redox state of the free nicotinamide-adenine dinucleotide couple in the cytoplasm and mitochondria of muscle tissue from Ascaris lumbricoides (Nematoda). Comparative Biochemistry and Physiology 44A, 331–40.CrossRefGoogle ScholarPubMed
Bergmeyer, H. U. & Bernt, E. (1965). Malic dehydrogenase. In Methods of Enzymatic Analysis (ed. Bergmeyer, H. U.), pp. 757–60. New York: Academic Press.CrossRefGoogle Scholar
Brazier, J. B. & Jaffe, J. J. (1973). Two types of pyruvate kinase in schistosomes and filariae. Comparative Biochemistry and Physiology 44B, 145–55.Google ScholarPubMed
Bryant, C. (1975). Carbon dioxide utilization and the regulation of respiratory metabolic pathways in parasitic helminths. In Advances in Parasitology 13 (ed. Dawes, B.), pp. 3569. New York: Academic Press.Google Scholar
Bücher, T., Czok, R., Lamprecht, W. & Latzko, E. (1965). Pyruvate. In Methods of Enzymatic Analysis (ed. Bergmeyer, H. U.), pp. 255–9. New York: Academic Press.Google Scholar
Bücher, T. & Pfleiderer, G. (1955). Pyruvate kinase. In Methods of Enzymology, vol. 1 (ed. Colowick, S. P. and Kaplan, N. O.), pp. 435–40. New York: Academic Press.CrossRefGoogle Scholar
Bueding, E. (1963). Electron transport and fermentations in Ascaris lumbricoides. In Control Mechanisms in Respiration and Fermentation (ed. Wright, B.), pp. 167–77. New York: Ronald Press.Google Scholar
Bueding, E. & Saz, H. J. (1968). Pyruvate kinase and phosphoenolpyruvate carboxykinase activities of Ascaris lumbricoides muscle, Hymenolepis diminuta and Schistosoma mansoni. Comparative Biochemistry and Physiology 24, 511–18.Google Scholar
Carroll, N. Y., Langley, R. W. & Roe, J. H. (1956). The determination of glycogen in liver and muscle by use of anthrone reagent. Journal of Biological Chemistry 220, 583–93.CrossRefGoogle ScholarPubMed
Cheah, K. S. (1972). Cytochromes in Ascaris and Monieza. In Comparative Biochemistry of Parasites (ed. Van den Bossche, H.), pp. 417–32. London and New York: Academic Press.Google Scholar
Fodge, D. W., Gracy, R. W. & Harris, B. G. (1972). Studies on enzymes from parasitic helminths. 1. Purification and physical properties of malic enzyme from the muscle tissue of Ascaris suum. Biochimica et Biophysica Acta 268, 271–84.CrossRefGoogle Scholar
Hochachka, P. W. (1973). Comparative intermediary metabolism. In Comparative Animal Physiology (ed. Prosser, C. L.) London: W. B. Saunders.Google Scholar
Hohorst, H.-J. (1965 a). L-(+)-lactate determination with lactate dehydrogenase and DPN. In Methods of Enzymatic Analysis (ed. Bergmeyer, H. U.), pp. 266–70. New York: Academic Press.Google Scholar
Hohorst, H.-J. (1965 b). L.(−)-malate determination with malic dehydrogenase and DPN. In Methods of Enzymatic Analysis (ed. Bergmeyer, H. U.), pp. 328–32. New York: Academic Press.CrossRefGoogle Scholar
Hohorst, H.-J. & Reim, M. (1965). Oxaloacetate. In Methods of Enzymatic Analysis (ed. Bergmeyer, H. U.), pp. 335–9. New York: Academic Press.CrossRefGoogle Scholar
Kornberg, A. (1955). Methods of Enzymology, vol. 1 (ed. Colowick, S. P. and Kaplan, N. O.), pp. 441–3. New York: Academic Press.Google Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Protein measurements with Folin phenol reagent. Journal of Biological Chemistry 193, 265–75.Google Scholar
McManus, D. P. & James, B. L. (1975). Tricarboxylic acid cycle enzymes in the digestive gland of Littorina saxatilis rudis (Maton) and in the daughter sporocysts of Microphallus similis (Jag) (Digenea: Microphallidae). Comparative Biochemistry and Physiology 50B, 491–5.Google Scholar
Prichard, R. K. & Schofield, P. J. (1968 a). The glycolytic pathway in adult liver fluke, Fasciola hepatica. Comparative Biochemistry and Physiology 24, 697710.CrossRefGoogle ScholarPubMed
Prichard, R. K. & Schofield, P. J. (1968 b). Phosphoenol-pyruvate carboxykinase in the adult liver fluke, Fasciola hepatica. Comparative Biochemistry and Physiology 24, 773–85.CrossRefGoogle Scholar
Prichard, R. K. & Schofield, P. J. (1969). A comparative study of the tricarboxylic acid cycle enzymes in Fasciola hepatica and rat liver. Comparative Biochemistry and Physiology 25, 1005–19.Google Scholar
Racker, E. (1955). Alcohol dehydrogenase from Baker's Yeast. In Methods in Enzymologoy, vol. 1 (ed. Colowick, S. P. and Kaplan, N. O.), pp. 500–3. New York: Academic Press.Google Scholar
Roe, J. H. (1955). Determination of sugar in blood and spinal fluid with anthrone reagent. Journal of Biological Chemistry 212, 335–43.Google Scholar
Saz, H. 3. (1972). Comparative biochemistry of carbohydrates in nematodes and cestodes. In Comparative Biochemistry of Parasites (ed. Van den Bossche, H.), pp. 3347. New York: Academic Press.CrossRefGoogle Scholar
Saz, H. J. & Lescure, O. L. (1969). The functions of phosphoenolpyruvate carboxykinase and malic enzyme in the anaerobic formation of succinate by Ascaris lumbricoides. Comparative Biochemistry and Physiology 30, 4960.Google Scholar
Singer, T. P., Bernath, P. & Lusty, C. J. (1965). Succinate. In Methods of Enzymatic Analysis (ed. Bergmeyer, H. U.), pp. 340–5. New York: Academic Press.Google Scholar
Umbreit, W. W., Burris, R. H. & Stauffer, J. F. (1964). Manometric Techniques. Minneapolis: Burgess.Google Scholar
Vaatstra, W. J. (1969). Intermediary metabolism of the cattle lungworm Dictyocaulus viviparus. Hoppe-Seyler's Zeitschrift für Physiologie und Chemie 350, 701–9.CrossRefGoogle ScholarPubMed
Van Den Bossche, H., Vanparijs, D. F. J. & Thienpont, D. (1969). Studies on the carbohydrate metabolism of third-stage Haemonchus contortus larvae. Life Sciences 8, 1047–54.Google Scholar
Ward, C. W. & Schofield, P. J. (1967). Glycolysis in Haemonchus contortus larvae and rat liver. Comparative Biochemistry and Physiology 22, 3352.CrossRefGoogle ScholarPubMed