Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-10T17:11:49.543Z Has data issue: false hasContentIssue false

Resistance towards monensin is proposed to be acquired in a Toxoplasma gondii model by reduced invasion and egress activities, in addition to increased intracellular replication

Published online by Cambridge University Press:  05 September 2017

AHMED THABET
Affiliation:
Institute of Parasitology, Faculty of Veterinary Medicine, Centre for Infectious Diseases, University of Leipzig, Leipzig, Germany
JOHANNES SCHMIDT
Affiliation:
Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research – UFZ, Leipzig, Germany
SVEN BAUMANN
Affiliation:
Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research – UFZ, Leipzig, Germany Institute of Pharmacy, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
WALTHER HONSCHA
Affiliation:
Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
MARTIN VON BERGEN
Affiliation:
Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research – UFZ, Leipzig, Germany Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany Department of Chemistry and Bioscience, Center for Microbial Communities, University of Aalborg, Aalborg East, Denmark
ARWID DAUGSCHIES
Affiliation:
Institute of Parasitology, Faculty of Veterinary Medicine, Centre for Infectious Diseases, University of Leipzig, Leipzig, Germany Albrecht-Daniel-Thaer-Institute, Leipzig, Germany
BERIT BANGOURA*
Affiliation:
Institute of Parasitology, Faculty of Veterinary Medicine, Centre for Infectious Diseases, University of Leipzig, Leipzig, Germany University of Wyoming, Department of Veterinary Sciences, Laramie, WY, USA
*
*Corresponding author: Department of Veterinary Sciences, WSVL, 1174 Snowy Range Rd, 82070 Laramie, WY, USA. E-mail: [email protected]

Summary

Monensin (Mon) is an anticoccidial polyether ionophore widely used to control coccidiosis. The extensive use of polyether ionophores on poultry farms resulted in widespread resistance, but the underlying resistance mechanisms are unknown in detail. For analysing the mode of action by which resistance against polyether ionophores is obtained, we induced in vitro Mon resistance in Toxoplasma gondii-RH strain (MonR-RH) and compared it with the sensitive parental strain (Sen-RH). The proteome assessment of MonR-RH and Sen-RH strains was obtained after isotopic labelling using stable isotope labelling by amino acid in cell culture. Relative proteomic quantification between resistant and sensitive strains was performed using liquid chromatography-mass spectrometry/mass spectrometry. Overall, 1024 proteins were quantified and 52 proteins of them were regulated. The bioinformatic analysis revealed regulation of cytoskeletal and transmembrane proteins being involved in transport mechanisms, metal ion-binding and invasion. During invasion, actin and microneme protein 8 (MIC8) are seem to be important for conoid extrusion and forming moving junction with host cells, respectively. Actin was significantly upregulated, while MIC8 was downregulated, which indicate an invasion reduction in the resistant strain. Resistance against Mon is not a simple process but it involves reduced invasion and egress activity of T. gondii tachyzoites while intracellular replication is enhanced.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Borges-Pereira, L., Budu, A., McKnight, C., Moore, C., Vella, S., Triana, M., Liu, J., Garcia, C., Pace, D. and Moreno, S. (2015). Calcium signaling throughout the Toxoplasma gondii lytic cycle. A study using genetically encoded calcium indicators. The Journal of Biological Chemistry 290, 2691426926.CrossRefGoogle ScholarPubMed
Brumlik, M. J., Wei, S., Finstad, K., Nesbit, J., Hyman, L. E., Lacey, M., Burow, M. E. and Curiel, T. J. (2004). Identification of a novel mitogen-activated protein kinase in Toxoplasma gondii . International Journal of Parasitology 34, 12451254.CrossRefGoogle ScholarPubMed
Brunelle, J. L. and Green, R. (2014). One-dimensional SDS-polyacrylamide gel electrophoresis (1D SDS-PAGE). Methods in Enzymology 541, 151159.CrossRefGoogle ScholarPubMed
Caldas, L. A., de Souza, W. and Attias, M. (2007). Calcium ionophore-induced egress of Toxoplasma gondii shortly after host cell invasion. Veterinary Parasitology 147, 210220.CrossRefGoogle ScholarPubMed
Cérède, O., Dubremetz, J., Soête, M., Deslée, D., Vial, H., Bout, D. and Lebrun, M. (2005). Synergistic role of micronemel protein in Toxoplasma gondii virulence. The Journal of Experimental Medicine 201, 453463.CrossRefGoogle ScholarPubMed
Chapman, H. D., Jeffers, T. K. and Williams, R. B. (2010). Forty years of monensin for the control of coccidiosis in poultry. Poultry Science 89, 17881801.CrossRefGoogle ScholarPubMed
Chen, T., Zhang, W., Wang, J., Dong, H. and Wang, M. (2008). Eimeria tenella: analysis of differentially expressed genes in the monensin- and maduramicin-resistant lines using cDNA array. Experimental Parasitology 119, 264271.CrossRefGoogle ScholarPubMed
Cherry, A. A. and Ananvoranich, S. (2014). Characterization of a homolog of DEAD-box RNA helicases in Toxoplasma gondii as a marker of cytoplasmic mRNP stress granules. Gene 543, 3444.CrossRefGoogle ScholarPubMed
Couzinet, S., Dubremetz, J. F., Buzoni-Gatel, D., Jeminet, G. and Prensier, G. (2000). In vitro activity of the polyether ionophorous antibiotic monensin against the cyst form of Toxoplasma gondii . Parasitology 121, 359365.CrossRefGoogle ScholarPubMed
Del Carmen, M. G., Mondragón, M., González, S. and Mondragón, R. (2009). Induction and regulation of conoid extrusion in Toxoplasma gondii . Cellular Microbiology 11, 967982.CrossRefGoogle ScholarPubMed
Dobrowolski, J. M., Niesman, I. R and Sibley, L. D. (1997). Actin in the parasite Toxoplasma gondii is encoded by a single copy gene, ACT1 and exists primarily in a globular form. Cell Motility and the Cytoskeleton 37, 253262.3.0.CO;2-7>CrossRefGoogle Scholar
Doliwa, C., Xia, D., Escotte-Binet, S., Newsham, E. L., Sanya, J. S., Aubert, D., Randle, N., Wastling, J. M. and Villena, I. (2013). Identification of differentially expressed proteins in sulfadiazine resistant and sensitive strains of Toxoplasma gondii using difference-gel electrophoresis (DIGE). International Journal of Parasitology: Drugs and Drug Resistance 3, 3544.Google ScholarPubMed
Dou, Z. and Carruthers, V. B. (2011). Cathepsin proteases in Toxoplasma gondii . Advances in Experimental Medicine and Biology 712, 4961.CrossRefGoogle ScholarPubMed
Dubey, J. P., Velmurugan, G. V., Rajendran, C., Yabsley, M. J., Thomas, N. J., Beckmen, K. B., Sinnett, D., Ruid, D., Hart, J., Fair, P. A., McFee, W. E., Shearn-Bochsler, V., Kwok, O. C. H., Ferreira, L. R., Choudhary, S., Faria, E. B., Zhou, H., Felix, T. A. and Su, C. (2011). Genetic characterisation of Toxoplasma gondii in wildlife from North America revealed widespread and high prevalence of the fourth clonal type. International Journal of Parasitology 41, 11391147.CrossRefGoogle ScholarPubMed
Dzierszinski, F., Nishi, M., Ouko, L. and Roos, D. (2004). Dynamics of Toxoplasma gondii differentiation. Eukaryotic cell 3, 9921003.CrossRefGoogle ScholarPubMed
Edvinsson, B., Lappalainen, M. and Evengård, B., ESCMID Study Group for Toxoplasmosis. (2006). Real-time PCR targeting a 529-bp repeat element for diagnosis of toxoplasmosis. Clinical Microbiology and Infection 12, 131136.CrossRefGoogle ScholarPubMed
Fedyanina, O. S., Book, A. J. and Grishchuk, E. L. (2009). Tubulin heterodimers remain functional for one cell cycle after the inactivation of tubulin-folding cofactor D in fission yeast cells. Yeast 26, 235247.CrossRefGoogle ScholarPubMed
Field, M. C., Ali, B. R. and Field, H. (1999). GTPases in protozoan parasites: tools for cell biology and chemotherapy. Parasitology Today 15, 365371.CrossRefGoogle ScholarPubMed
Garrison, E. and Arrizabalaga, G. (2009). Disruption of a mitochondrial MutS DNA repair enzyme homologue confers drug resistance in the parasite Toxoplasma gondii . Molecular Microbiology 72, 425441.CrossRefGoogle ScholarPubMed
Georgieva, D., Risch, M., Kardas, A., Buck, F., von Bergen, M. and Betzel, C. (2008). Comparative analysis of the venom proteomes of Vipera ammodytes and Vipera ammodytes meridionalis. Journal of Proteome Research 7, 866886.CrossRefGoogle ScholarPubMed
Heaslip, A. T., Leung, J. M., Carey, K. L., Catti, F., Warshaw, D. M., Westwood, N. J., Ballif, B. A. and Ward, G. E. (2010). A small-molecule inhibitor of T. gondii motility induces the posttranslational modification of myosin light chain-1 and inhibits myosin motor activity. PLoS Pathogens 6, e1000720.CrossRefGoogle ScholarPubMed
Heaslip, A. T., Nelson, S. R. and Warshaw, D. M. (2016). Dense granule trafficking in Toxoplasma gondii requires a unique class 27 myosin and actin filaments. Molecular Biology of the Cell 27, 20802089.CrossRefGoogle ScholarPubMed
Hu, K., Mann, T., Striepen, B., Beckers, C., Roos, D. and Murray, J. (2002). Daughter cell assembly in the protozoan parasite Toxoplasma gondii . Molecular Biology of the Cell 13, 593606.CrossRefGoogle ScholarPubMed
Kessler, H., Herm-Götz, A., Hegge, S., Rauch, M., Soldati-Favre, D., Frischknecht, F. and Meissner, M. J. (2008). Microneme protein 8 – a new essential invasion factor in Toxoplasma gondii . Journal of Cell Science 121, 947956.CrossRefGoogle ScholarPubMed
Kevin, D. A., Meujo, D. A. and Hamann, M. T. (2009). Polyether ionophores: broad-spectrum and promising biologically active molecules for the control of drug-resistant bacteria and parasites. Expert Opinion on Drug Discovery 4, 109146.CrossRefGoogle Scholar
Khaminets, A., Hunn, J. P., Könen-Waisman, S., Zhao, Y. O., Preukschat, D., Coers, J., Boyle, J. P., Ong, Y. C., Boothroyd, J. C., Reichmann, G. and Howard, J. C. (2010). Coordinated loading of IRG resistance GTPases on to the Toxoplasma gondii parasitophorous vacuole. Cellular Microbiology 12, 939961.CrossRefGoogle Scholar
Lavine, M. D. and Arrizabalaga, G. (2011). The antibiotic monensin causes cell cycle disruption of Toxoplasma gondii mediated through the DNA repair enzyme TgMSH-1. Antimicrobial Agents and Chemotherapy 55, 745755.CrossRefGoogle ScholarPubMed
Liu, J., Pace, D., Dou, Z., King, T. P., Guidot, D., Li, Z. H., Carruthers, V. B. and Moreno, S. N. (2014). A vacuolar-H(+)-pyrophosphatase (TgVP1) is required for microneme secretion, host cell invasion, and extracellular survival of Toxoplasma gondii . Molecular Microbiology 93, 698712.CrossRefGoogle ScholarPubMed
Luo, S., Marchesini, N., Moreno, S. N. and Docampo, R. (1999). A plant-like vacuolar H(+)-pyrophosphatase in Plasmodium falciparum . FEBS Letters 460, 217220.CrossRefGoogle ScholarPubMed
Mavin, S., Joss, A., Ball, J. and Ho-Yen, D. O. (2004). Do Toxoplasma gondii RH strain tachyzoites evolve during continuous passage?. Journal of Clinical Pathology 57, 609611.CrossRefGoogle ScholarPubMed
McFarland, M. M., Zach, S. J., Wang, X., Potluri, L. P., Neville, A. J., Vennerstrom, J. L. and Davis, P. H. (2016). A review of experimental compounds demonstrating anti-Toxoplasma activity. Antimicrobial Agents and Chemotherapy 20, 70177034.CrossRefGoogle Scholar
Meissner, M., Reiss, M., Viebig, N., Carruthers, V. B., Toursel, C., Tomavo, S., Ajioka, J. W. and Soldati, D. (2002). A family of transmembrane microneme proteins of Toxoplasma gondii contain EGF-like domains and function as escorters. Journal of Cell Science 115, 563574.CrossRefGoogle ScholarPubMed
Mercier, C. and Cesbron-Delauw, M. F. (2015). Toxoplasma secretory granules: one population or more?. Trends in Parasitology 31, 6071.CrossRefGoogle ScholarPubMed
Mondragón, R. and Frixione, E. (1996). Ca (2+)-dependence of conoid extrusion in Toxoplasma gondii tachyzoites. Journal of Eukaryotic Microbiology 43, 120127.CrossRefGoogle Scholar
Ong, S. E. and Mann, M. (2005). Mass spectrometry-based proteomics turns quantitative. Nature Chemical Biology 1, 252262.CrossRefGoogle ScholarPubMed
Peek, H. W. and Landman, W. J. M. (2003). Resistance to anticoccidial drugs of Dutch avian Eimeria spp. field isolates originating from 1996, 1999 and 2001. Avian Pathology 32, 391401.CrossRefGoogle ScholarPubMed
Pittman, K. J., Aliota, M. T. and Knoll, L. J. (2014). Dual transcriptional profiling of mice and Toxoplasma gondii during acute and chronic infection. BMC Genomics 15, 806.CrossRefGoogle ScholarPubMed
R Development Core Team (2011). R: A Language and Environment for Statistical Computing. The R Foundation for Statistical Computing, Vienna, Austria. ISBN: 3-900051-07-0. Available online at http://www.R-project.org/.Google Scholar
Rabenau, K. E., Sohrabi, A., Tripathy, A., Reitter, C., Ajioka, J. W., Tomley, F. M. and Carruthers, V. B. (2001). TgM2AP participates in Toxoplasma gondii invasion of host cells and is tightly associated with the adhesive protein TgMIC2. Molecular Microbiology 41, 537547.CrossRefGoogle ScholarPubMed
Ricketts, A. P. and Pfefferkorn, E. R. (1993). Toxoplasma gondii: susceptibility and development of resistance to anticoccidial drugs in vitro . Antimicrobial Agents and Chemotherapy 37, 23582363.CrossRefGoogle ScholarPubMed
Roiko, M. S. and Carruthers, V. B. (2013) Functional dissection of Toxoplasma gondii perforin-like protein 1 reveals a dual domain mode of membrane binding for cytolysis and parasite egress. The Journal of Biological Chemistry 288, 87128725.CrossRefGoogle ScholarPubMed
Schmidt, J., Kliemt, S., Preissler, C., Moeller, S., von Bergen, M., Hempel, U. and Kalkhof, S. (2016). Osteoblast-released matrix vesicles, regulation of activity and composition by sulfated and non-sulfated glycosaminoglycans. Molecular and Cellular Proteomics 15, 558572.CrossRefGoogle ScholarPubMed
Smith, S. S., Pfluger, S. L., Hjort, E., McArthur, A. G. and Hager, K. M. (2007). Molecular evolution of the vesicle coat component betaCOP in Toxoplasma gondii . Molecular Phylogenetics and Evolution 44, 12841294.CrossRefGoogle ScholarPubMed
Song, H. O., Ahn, M. H., Ryu, J. S., Min, D. Y., Joo, K. H. and Lee, Y. H. (2004). Influence of calcium ion on host cell invasion and intracellular replication by Toxoplasma gondii . Korean Journal of Parasitology 42, 185193.CrossRefGoogle ScholarPubMed
Stephan, B., Rommel, M., Daugschies, A. and Haberkorn, A. (1997). Studies of resistance to anticoccidials in Eimeria field isolates and pure Eimeria strains. Veterinary Parasitology 69, 1929.CrossRefGoogle Scholar
Takemae, H., Sugi, T., Kobayashi, K., Gong, H., Ishiwa, A., Recuenco, F., Murakoshi, F., Iwanaga, T., Inomata, A., Horimoto, T., Akshi, H. and Kato, K. (2013). Characterization of the interaction between Toxoplasma gondii rhoptry neck protein 4 and host cellular β-tubulin. Scientific Reports 13, 3199.CrossRefGoogle Scholar
Tardieux, I. and Baum, J. (2016). Reassessing the mechanics of parasite motility and host-cell invasion. The Journal of Cell Biology 214, 507515.CrossRefGoogle ScholarPubMed
Travier, L., Mondragon, R., Dubremetz, J. F., Musset, K., Mondragon, M., Gonzalez, S., Cesbron-Delauw, M. F. and Mercier, C. (2008). Functional domains of the Toxoplasma GRA2 protein in the formation of the membranous nanotubular network of the parasitophorous vacuole. International Journal of Parasitology 38, 757773.CrossRefGoogle ScholarPubMed
Treeck, M., Sanders, J. L., Gaji, R. Y., LaFavers, K. A., Child, M. A., Arrizabalaga, G., Elias, J. E. and Boothroyd, J. C. (2014). The calcium-dependent protein kinase 3 of Toxoplasma influences basal calcium levels and functions beyond egress as revealed by quantitative phosphoproteome analysis. PLoS Pathogens 10, e1004197.CrossRefGoogle ScholarPubMed
Wasmuth, J. D., Pszenny, V., Haile, S., Jansen, E. M., Gast, A. T., Sher, A., Boyle, J. P., Boulanger, M. J., Parkinson, J. and Grigg, M. E. (2012). Integrated bioinformatic and targeted deletion analyses of the SRS gene superfamily identify SRS29C as a negative regulator of Toxoplasma virulence. MBio Journal 3, pii: e00321-12.CrossRefGoogle ScholarPubMed
Wu, L., Zhang, Q. X., Li, T. T., Chen, S. X. and Cao, J. P. (2009). [In vitro culture of Toxoplasma gondii tachyzoites in HFF and HeLa cells]. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi 27, 229231.Google ScholarPubMed
Supplementary material: File

Thabet et al supplementary material

Thabet et al supplementary material 1

Download Thabet et al supplementary material(File)
File 997.3 KB
Supplementary material: File

Thabet et al supplementary material

Thabet et al supplementary material 2

Download Thabet et al supplementary material(File)
File 12.3 KB