Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T00:35:26.621Z Has data issue: false hasContentIssue false

A repetitive deoxyribonucleic acid sequence distinguishes Trypanosoma simiae from T. congolense

Published online by Cambridge University Press:  06 April 2009

P. A. O. Majiwa
Affiliation:
International Laboratory for Research on Animal Diseases (ILRAD), P.O. Box 30709, Nairobi, KE
P. Webster
Affiliation:
International Laboratory for Research on Animal Diseases (ILRAD), P.O. Box 30709, Nairobi, KE

Summary

The dominant repetitive deoxyribonucleic acid (DNA) sequence in the genome of a clone of Trypanosoma (Nannomonas) simiae has been identified and cloned as a recombinant plasmid. The recombinant plasmid was used in hybridization analyses of DNA samples obtained from various trypanosome species and subspecies. The results indicated that the T. simiae repetitive DNA sequence hybridized with DNA derived only from T. simiae; it did not hybridize with DNA derived from clones or stocks of T. congolense, or from any other trypanosome species examined. A preliminary characterization of the cloned DNA sequence and its use in the identification of T. simiae of similar genotypes are presented.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agu, W. E. (1984). Comparative study of the susceptibility to infection with Trypanosoma simiae of Glossina morsitans and G. tachinoides. Acta Tropica 41, 131–4.Google ScholarPubMed
Aslund, L., Franzén, L., Westin, G., Persson, T., Wigzell, H. & Pettersson, U. (1985). Highly reiterated non-coding sequence in the genome of Plasmodium falciparum is composed of 21 base-pair tandem repeats. Journal of Molecular Biology 185, 509–16.CrossRefGoogle ScholarPubMed
Barker, R. H., Suebsaeng, L., Rooney, W., Alecrim, G. C., Dourado, H. V. & Wirth, D. (1986). Specific DNA probe for diagnosis of Plasmodium falciparum malaria. Science 231, 1434–6.CrossRefGoogle ScholarPubMed
Bashin, V. K., Clayton, C., Trager, W. & Cross, G. A. M. (1985). Variations in the organization of repetitive DNA sequences in the genome of Plasmodium falciparum clones. Molecular and Biochemical Parasitology 15, 149–58.Google Scholar
Borst, P., van der Ploeg, M., van Hoek, J. F. M., Tas, J. & James, J. (1982). On the DNA content and ploidy of trypanosomes. Molecular and Biochemical Parasitology 6, 1323.CrossRefGoogle ScholarPubMed
Carle, F. G. & Olson, M. V. (1984). Separation of chromosomal DNA molecules from yeast by orthogonal-field-alternation gel electrophoresis. Nucleic Acids Research 12, 5647–64.CrossRefGoogle ScholarPubMed
Coppel, R. L., Saint, R. B., Stahl, H. D., Langford, C. J., Brown, G. V., Anders, R. F. & Kemp, D. J. (1985). plasmodium falciparum: differentiation of isolates with DNA hybridization using antigen gene probes. Experimental Parasitology 60, 82–9.CrossRefGoogle ScholarPubMed
Davis, R. W., Simon, M. & Davidson, N. (1971). Electron microscope heteroduplex methods for mapping regions of base sequence homology in nucleic acids. Methods in Enzymology 21, 413–28.CrossRefGoogle Scholar
Donelson, J. E., Majiwa, P. A. O. & Williams, R. O. (1979). Kinetoplast DNA minicircles of Trypanosoma brucei share sequence homology. Plasmid 2, 572–88.CrossRefGoogle Scholar
Englund, P. T. (1981). Kinetoplast DNA. Biochemistory and Physiology of Protozoa 4, 333–83.Google Scholar
Feagin, J. E. & Stuart, K. (1985). Differential expression of mitochondrial genes between life cycle stages of Trypanosoma brucei. Proceedings of the National Academy of Sciences, USA 82, 3380–4.CrossRefGoogle ScholarPubMed
Franzén, L., Westin, G., Shabo, R., Aslund, L., Perlmann, H., Persson, T., Wigzell, H. & Pettersson, U. (1984). Analysis of clinical specimens by hybridization with probe containing repetitive DNA from Plasmodium falciparum: a novel approach to malaria diagnosis. Lancet 1, 525–7.CrossRefGoogle ScholarPubMed
Gashumba, J. K., Gibson, W. C. & Opiyo, E. A. (1986). A preliminary comparison of Trypanosoma simiae and T. congolense by isoenzyme electrophoresis. Acta Tropica 43, 1519.Google Scholar
Godfrey, D. G. (1961). Types of Trypanosoma congolense. II. Differences in the course of infection. Annals of Tropical Medicine and Parasitology 55, 154–66.CrossRefGoogle Scholar
Godfrey, D. G. (1977). Problems of distinguishing between morphologically similar trypanosomes of mammals. Protozoology 3, 3349.Google Scholar
Godfrey, D. G. (1982). Diversity within Trypanosoma congolense. In Perspectives in Trypanosomiasis Research, (ed. Baker, J. R.), pp. 37–16. London: John Wiley and Sons.Google Scholar
Gonzalez, A., Prediger, E., Huecas, M. E., Nogueira, N. & Lizardi, P. M. (1984). Mini-chromosomal repetitive DNA in Trypanosoma cruzi: its use in a high sensitivity parasite detection assay. Proceedings of the National Academy of Sciences, USA 81, 3356–60.CrossRefGoogle Scholar
Grab, D. J. & Bwayo, J. J. (1982). Isopycnic isolation of African trypanosomes on Percoll gradients formed in situ. Acta Tropica 39, 363–6.Google ScholarPubMed
Grunstein, M. & Hogness, D. (1975). Colony hybridization: a method for the isolation of cloned DNAs that contain a specific gene. Proceedings of the National Academy of Sciences, USA 72, 3961–5.CrossRefGoogle ScholarPubMed
Hoare, C. A. (1970). Systematic description of the mammalian trypanosomes of Africa. In The African Trypanosomiases (ed. Mulligan, H. W.), p. 32. London: George Allen and Unwin.Google Scholar
Hoare, C. A. (1972). The Trypanosomes of Mammals: A Zoological Monograph. Oxford: Blackwell Scientific Publications.Google Scholar
Janssen, J. A. H. A. & Wijers, D. J. B. (1974). Trypanosoma simiae at the Kenya coast. A correlation between virulence and the transmitting species of Glossina. Annals of Tropical Medicine and Parasitology 68, 519.CrossRefGoogle Scholar
Jeffreys, A. J., Brookfield, J. F. Y. & Semenoff, R. (1985). Positive identification of an immigration test-case using human DNA fingerprints. Nature, London 317, 818–19.CrossRefGoogle ScholarPubMed
Kafatos, F. C., Jones, W. C. & Efstratiadis, A. (1979). Determination of nucleic acid sequence homologies and relative concentrations by dot hybridization procedure. Nucleic Acids Research 7, 1541–52.CrossRefGoogle ScholarPubMed
Kleinschmidt, A. K. (1968). Monolayer technique in electron microscopy of nucleic acid molecules. Methods in Enzymology 12B, 361–77.CrossRefGoogle Scholar
Kukla, B. A., Majiwa, P. A. O., Young, J. R., Moloo, S. K. & Ole-Moiyoi, O. (1987). Use of species-specific DNA probes for detection and identification of trypanosome infection in tsetse flies. Parasitology 95, 116.CrossRefGoogle ScholarPubMed
Lang, D. & Mitani, M. (1970). Simplified quantitative electron microscopy of biopolymers. Biopolymers 9, 373–9.CrossRefGoogle ScholarPubMed
Lanham, S. M. & Godfrey, D. G. (1970). Isolation of salivarian trypanosomes from man and other mammals using DEAE-cellulose. Experimental Parasitology 28, 521–31.CrossRefGoogle ScholarPubMed
Lewin, B. (1980). Gene Expression, 2nd Edn, pp. 503–69. New York: John Wiley and Sons.Google Scholar
Mackenzie, P. K. I. & Boyt, W. P. (1969). Notes upon a trypanosome strain resembling T. congolense apparently completely adapted to the porcine species. British Veterinary Journal 125, 414–21.CrossRefGoogle Scholar
Majiwa, P. A. O., Hamees, R., van Meirvenne, N. & Matthyssens, G. (1986). Evidence for genetic diversity in Trypanosoma (Nannomonas) congolense. Parasitology 93, 291304.CrossRefGoogle ScholarPubMed
Majiwa, P. A. O., Masake, R. A., Nantulya, N. M., Hamers, R. & Matthyssens, G. (1985). Trypanosoma (Nannomonas) congolense: identification of two karyotypic groups. EM BO Journal 4, 3307–13.Google ScholarPubMed
Maniatis, T., Fritsch, E. F. & Sambrook, J. (1982). Molecular Cloning: a Laboratory Manual. New York: Cold Spring Harbor Laboratory.Google Scholar
Massamba, N. N. & Williams, R. O. (1984). Distinction of African trypanosomes using nucleic acid hybridization. Parasitology 88, 5565.CrossRefGoogle ScholarPubMed
O'Brien, S. J., Nash, W. G., Wildt, D. E., Bush, M. E. & Benveniste, R. E. (1985). A molecular solution to the riddle of the giant panda's phylogeny. Nature, London 317, 140–4.CrossRefGoogle Scholar
Pettersson, U. & Hyypiä, T. (1985). Nucleic acid hybridization – an alternative tool in diagnostic microbiology. Immunology Today 6, 268–72.CrossRefGoogle ScholarPubMed
Post, R. J. (1985). DNA probes for vector identification. Parasitology Today 1, 8990.CrossRefGoogle ScholarPubMed
Rigby, P. W. J., Dickmann, M., Rhodes, C. & Berg, P. (1977). Labelling deoxyribonucleic acid to high specific activity in vitro by nick-translation with DNA polymerase I. Journal of Molecular Biology 113, 237–51.CrossRefGoogle ScholarPubMed
Roberts, C. J. (1971). The lack of infectivity to cattle of a strain of Trypanosoma simiae transmitted by Glossina morsitans and G. tachinoides. Annals of Tropical Medicine and Parasitology 65, 319–26.CrossRefGoogle ScholarPubMed
Sloof, P., Bos, J. L., Konings, A. F. J. M., Menke, H. H., Borst, P., Gutteridge, W. E. & Leon, W. (1983). Characterisation of satellite DNA in Trypanosoma brucei and Trypanosoma cruzi. Journal of Molecular Biology 167, 121.CrossRefGoogle ScholarPubMed
Smith, G. E. & Summers, M. D. (1980). The bidirectional transfer of DNA and RNA to nitrocellulose or diazobenzyloxy-methyl-paper. Analytical Biochemistry 109, 123–9.CrossRefGoogle ScholarPubMed
Southern, E. M. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98, 503–17.CrossRefGoogle ScholarPubMed
Steinert, M. & van Assel, S. (1975). Large circular mitochondrial DNA in Crithidia luciliae. Experimental Cell Research 96, 406–9.CrossRefGoogle ScholarPubMed
Stephen, L. E. (1966). Pig Trypanosomiasis in Africa. Farnham Royal: Commonwealth Agricultural Bureaux.Google Scholar
Stuart, K. (1983). Mitochondrial DNA of an African trypanosome. Journal of Cellular Biochemistry 23, 1326.CrossRefGoogle ScholarPubMed
Tchen, P., Anxolabehere, D. A., Nouaud, D. & Periquet, G. (1985). Hybridization on squashed flies: a method to detect gene sequences in individual Drosophila. Analytical Biochemistry 150, 414–20.CrossRefGoogle Scholar
Vickerman, K. & Preston, T. M. (1970). Spindle microtubules in the dividing nuclei of trypanosomes. Journal of Cell Science 6, 365–83.CrossRefGoogle ScholarPubMed
Williams, R. O., Young, J. R. & Majiwa, P. A. O. (1982). Genomic environment of T. brucei VSG genes: presence of a minichromosome. Nature, London 299, 415–21.CrossRefGoogle ScholarPubMed
Wirth, D. F. & Pratt, D. M. (1982). Rapid identification of Leishmania species by specific hybridization of kinetoplast DNA in cutaneous lesions. Proceedings of the National Academy of Science, USA 79, 69997003.CrossRefGoogle ScholarPubMed
World Health Organization (1979). The African trypanosomiases: WHO Technical Report Series No. 6351, pp. 21–2. Geneva: World Health Organization.Google Scholar
Young, C. J. & Godfrey, D. G. (1983). Enzyme polymorphism and the distribution of Trypanosoma congolense isolates. Annals of Tropical Medicine and Parasitology 77, 467–81.CrossRefGoogle ScholarPubMed