Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T15:12:31.331Z Has data issue: false hasContentIssue false

Remote sensing, geographical information system and spatial analysis for schistosomiasis epidemiology and ecology in Africa

Published online by Cambridge University Press:  23 July 2009

C. Simoonga*
Affiliation:
Ministry of Health, P.O. Box 30205, 10101 Lusaka, Zambia University of Zambia, School of Medicine, Department of Community Medicine, P.O. Box 50110, Lusaka, Zambia
J. Utzinger
Affiliation:
Department of Public Health and Epidemiology, Swiss Tropical Institute, P.O. Box, CH-4002 Basel, Switzerland
S. Brooker
Affiliation:
Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom Malaria Public Health and Epidemiology Group, Centre for Geographic Medicine, KEMRI/Wellcome Trust Research Laboratories, Nairobi, Kenya
P. Vounatsou
Affiliation:
Department of Public Health and Epidemiology, Swiss Tropical Institute, P.O. Box, CH-4002 Basel, Switzerland
C. C. Appleton
Affiliation:
School of Biological and Conservation Sciences, University of KwaZulu-Natal, Howard College Campus, Durban 4041, South Africa
A. S. Stensgaard
Affiliation:
Mandahl-Barth Research Centre, DBL–Institute for Veterinary Pathobiology, Faculty of Life Science, University of Copenhagen, Thorvaldsensvej 57, DK-1871 Frederiksberg, Denmark Center for Macroecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen O, Denmark
A. Olsen
Affiliation:
Mandahl-Barth Research Centre, DBL–Institute for Veterinary Pathobiology, Faculty of Life Science, University of Copenhagen, Thorvaldsensvej 57, DK-1871 Frederiksberg, Denmark
T. K. Kristensen
Affiliation:
Mandahl-Barth Research Centre, DBL–Institute for Veterinary Pathobiology, Faculty of Life Science, University of Copenhagen, Thorvaldsensvej 57, DK-1871 Frederiksberg, Denmark
*
*Corresponding author. Christopher Simoonga, Ministry of Health, P.O. Box 30205, 10101 Lusaka, Zambia. Tel.: +260 211 253-053; Fax: +260 211 253-053; E-mail: [email protected]

Summary

Beginning in 1970, the potential of remote sensing (RS) techniques, coupled with geographical information systems (GIS), to improve our understanding of the epidemiology and control of schistosomiasis in Africa, has steadily grown. In our current review, working definitions of RS, GIS and spatial analysis are given, and applications made to date with RS and GIS for the epidemiology and ecology of schistosomiasis in Africa are summarised. Progress has been made in mapping the prevalence of infection in humans and the distribution of intermediate host snails. More recently, Bayesian geostatistical modelling approaches have been utilized for predicting the prevalence and intensity of infection at different scales. However, a number of challenges remain; hence new research is needed to overcome these limitations. First, greater spatial and temporal resolution seems important to improve risk mapping and understanding of transmission dynamics at the local scale. Second, more realistic risk profiling can be achieved by taking into account information on people's socio-economic status; furthermore, future efforts should incorporate data on domestic access to clean water and adequate sanitation, as well as behavioural and educational issues. Third, high-quality data on intermediate host snail distribution should facilitate validation of infection risk maps and modelling transmission dynamics. Finally, more emphasis should be placed on risk mapping and prediction of multiple species parasitic infections in an effort to integrate disease risk mapping and to enhance the cost-effectiveness of their control.

Type
SECTION 1 ADVOCACY AND DEFINING AREAS IN NEED OF CONTROL
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdel-Rahman, M. S., El-Bahy, M. M., Malone, J. B., Thompson, N. M. and El-Bahy, N. M. (2001). Geographical information systems as a tool for control program management for schistosomiasis in Egypt. Acta Tropica 79, 4957.CrossRefGoogle ScholarPubMed
Appleton, C. C. (1978). Review of literature on abiotic factors influencing the distribution and life-cycles of bilharziasis intermediate host snails. Malacological Review 11, 125.Google Scholar
Arinola, O., Arinola, A. and Ojewale, S. (1996). Control of urinary schistosomiasis in Nigeria. World Health Forum 17, 291292.Google Scholar
Bailey, T. C. and Gatrell, A. C. (1995). Interactive Spatial Data Analysis. Addison-Wesley, Reading, MA, USA.Google Scholar
Beck-Wörner, C., Raso, G., Vounatsou, P., N'Goran, E. K., Rigo, G., Parlow, E. and Utzinger, J. (2007). Bayesian spatial risk prediction of Schistosoma mansoni infection in western Côte d'Ivoire using a remotely-sensed digital elevation model. American Journal of Tropical Medicine and Hygiene 76, 956963.CrossRefGoogle ScholarPubMed
Booth, M., Vennervald, B. J., Kenty, L., Butterworth, A. E., Kariuki, H. C., Kadzo, H., Ireri, E., Amaganga, C., Kimani, G., Mwatha, J. K., Otedo, A., Ouma, J. H., Muchiri, E. and Dunne, D. W. (2004). Micro-geographical variation in exposure to Schistosoma mansoni and malaria, and exacerbation of splenomegaly in Kenyan school-aged children. BMC Infectious Diseases 4, 13.CrossRefGoogle ScholarPubMed
Brooker, S. (2002). Schistosomes, snails and satellites. Acta Tropica 82, 207214.CrossRefGoogle ScholarPubMed
Brooker, S. (2007). Spatial epidemiology of human schistosomiasis in Africa: risk models, transmission dynamics and control. Transactions of the Royal Society of Tropical Medicine and Hygiene 101, 18.CrossRefGoogle ScholarPubMed
Brooker, S., Clements, A. C. A. and Bundy, D. A. P. (2006). Global epidemiology, ecology and control of soil-transmitted helminth infections. Advances in Parasitology 62, 221261.CrossRefGoogle ScholarPubMed
Brooker, S., Hay, S. I. and Bundy, D. A. P. (2002 a). Tools from ecology: useful for evaluating infection risk models? Trends in Parasitology 18, 7074.CrossRefGoogle ScholarPubMed
Brooker, S., Hay, S. I., Issae, W., Hall, A., Kihamia, C. M., Lwambo, N. J. S., Wint, W., Rogers, D. J. and Bundy, D. A. P. (2001). Predicting the distribution of urinary schistosomiasis in Tanzania using satellite sensor data. Tropical Medicine and International Health 6, 9981007.CrossRefGoogle ScholarPubMed
Brooker, S., Hay, S. I., Tchuem Tchuente, L. A. and Ratard, R. (2002 b). Using NOAA-AVHRR data to model human helminth distributions in planning disease control in Cameroon, West Africa. Photogrammetric Engineering and Remote Sensing 68, 175179.Google Scholar
Brooker, S., Kabatereine, N. B., Gyapong, J. O., Stothard, J. R. and Utzinger, J. (2009). Rapid assessment of schistosomiasis and other neglected tropical diseases in the context of integrated control programmes in Africa. Parasitology 136, doi: 10.1017/S0031182009005940CrossRefGoogle ScholarPubMed
Brooker, S. and Michael, E. (2000). The potential of geographical information systems and remote sensing in the epidemiology and control of human helminth infections. Advances in Parasitology 47, 245288.CrossRefGoogle ScholarPubMed
Brooker, S., Rowlands, M., Haller, L., Savioli, L. and Bundy, D. A. P. (2000). Towards an atlas of human helminth infection in sub-Saharan Africa: the use of geographical information systems (GIS). Parasitology Today 16, 303307.CrossRefGoogle ScholarPubMed
Brooker, S. and Utzinger, J. (2007). Integrated disease mapping in a polyparasitic world. Geospatial Health 1, 141146.CrossRefGoogle Scholar
Brown, D. S. (1994). Freshwater Snails of Africa and their Medical Importance. Taylor & Francies (2nd ed.), London, UK, 1608.CrossRefGoogle Scholar
Clements, A. C. A., Brooker, S., Nyandindi, U., Fenwick, A. and Blair, L. (2008 a). Bayesian spatial analysis of a national urinary schistosomiasis questionnaire to assist geographic targeting of schistosomiasis control in Tanzania, East Africa. International Journal for Parasitology 38, 401415.CrossRefGoogle ScholarPubMed
Clements, A. C. A., Garba, A., Sacko, M., Touré, S., Dembelé, R., Landouré, A., Bosque-Oliva, E., Gabrielli, A. F. and Fenwick, A. (2008 b). Mapping the probability of schistosomiasis and associated uncertainty, West Africa. Emerging Infectious Diseases 14, 16291632.CrossRefGoogle ScholarPubMed
Clements, A. C. A., Lwambo, N. J. S., Blair, L., Nyandindi, U., Kaatano, G., Kinung'hi, S., Webster, J. P., Fenwick, A. and Brooker, S. (2006 a). Bayesian spatial analysis and disease mapping: tools to enhance planning and implementation of a schistosomiasis control programme in Tanzania. Tropical Medicine and International Health 11, 490503.CrossRefGoogle ScholarPubMed
Clements, A. C. A., Moyeed, R. and Brooker, S. (2006 b). Bayesian geostatistical prediction of the intensity of infection with Schistosoma mansoni in East Africa. Parasitology 133, 711719.CrossRefGoogle ScholarPubMed
Clennon, J. A., King, C. H., Muchiri, E. M., Kariuki, H. C., Ouma, J. H., Mungai, P. and Kitron, U. (2004). Spatial patterns of urinary schistosomiasis infection in a highly endemic area of coastal Kenya. American Journal of Tropical Medicine and Hygiene 70, 443448.CrossRefGoogle Scholar
Clennon, J. A., Mungai, P. L., Muchiri, E. M., King, C. H. and Kitron, U. (2006). Spatial and temporal variations in local transmission of Schistosoma haematobium in Msambweni, Kenya. American Journal of Tropical Medicine and Hygiene 75, 10341041.CrossRefGoogle ScholarPubMed
Cline, B. L. (1970). New eyes for epidemiologists: aerial photography and other remote sensing techniques. American Journal of Epidemiology 92, 8589.CrossRefGoogle ScholarPubMed
Craig, M. H., Snow, R. W. and le Sueur, D. (1999). A climate-based distribution model of malaria transmission in sub-Saharan Africa. Parasitology Today 15, 105111.CrossRefGoogle ScholarPubMed
Cross, E. R. and Bailey, R. C. (1984). Prediction of areas endemic for schistosomiasis through use of discriminant analysis of environmental data. Military Medicine 149, 2830.CrossRefGoogle ScholarPubMed
Cross, E. R., Sheffield, C., Perrine, R. and Pazzaglia, G. (1984). Predicting areas endemic for schistosomiasis using weather variables and a Landsat data base. Military Medicine 149, 542544.CrossRefGoogle Scholar
Elith, J., Graham, C. H., Anderson, R. P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R. J., Huettmann, F., Leathwick, J., Lehmann, A., Li, J., Lohmann, L. G., Loiselle, B. A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J. M., Peterson, A. T., Phillips, S. J., Richardson, K., Scachetti-Pereira, R., Schapire, R., Soberón, J., Williams, S., Wisz, M. S. and Zimmermann, N. E. (2006) Novel methods improve prediction of species' distributions from occurrence data. Ecography 29, 129151.CrossRefGoogle Scholar
ESRI (1990). Understanding GIS: The ARC/INFO Method. Environmental System Research Institute. Redlands, CA, USA.Google Scholar
Fenwick, A. (2006). Waterborne infectious diseases – could they be consigned to history? Science 313, 10771081.CrossRefGoogle ScholarPubMed
Gemperli, A. and Vounatsou, P. (2004). Fitting generalized linear mixed models for point-referenced data. Journal of Modern Applied Statistical Methods 2, 497511.CrossRefGoogle Scholar
Guerra, C. A., Hay, S. I., Lucioparedes, L. S., Gikandi, P. W., Tatem, A. J., Noor, A. M. and Snow, R. W. (2007). Assembling a global database of malaria parasite prevalence for the malaria atlas project. Malaria Journal 6, 17.CrossRefGoogle ScholarPubMed
Handzel, T., Karanja, D. M. S., Addiss, D. G., Hightower, A. W., Rosen, D. H., Colley, D. G., Andove, J., Slutsker, L. and Secor, W. E. (2003). Geographic distribution of schistosomiasis and soil-transmitted helminths in western Kenya: implications for anthelminthic mass treatment. American Journal of Tropical Medicine and Hygiene 69, 318323.CrossRefGoogle ScholarPubMed
Hay, S. I. and Snow, R. W. (2006). The malaria atlas project: developing global maps of malaria risk. PLoS Medicine 3, e473.CrossRefGoogle ScholarPubMed
Hay, S. I., Tatem, A. J., Graham, A. J., Goetz, S. J. and Rogers, D. J. (2006). Global environmental data for mapping infectious disease distribution. Advances in Parasitology 62, 3777.CrossRefGoogle ScholarPubMed
Herbreteau, V., Salem, G., Souris, M., Hugot, J. P. and Gonzalez, J. P. (2007). Thirty years of use and improvement of remote sensing, applied to epidemiology: from early promises to lasting frustration. Health and Place 13, 400403.CrossRefGoogle ScholarPubMed
Kabatereine, N. B., Brooker, S., Koukounari, A., Kazibwe, F., Tukahebwa, E. M., Fleming, F. M., Zhang, Y., Webster, J. P., Stothard, J. R. and Fenwick, A. (2007). Impact of a national helminth control programme on infection and morbidity in Ugandan schoolchildren. Bulletin of the World Health Organization 85, 1999.Google ScholarPubMed
Kabatereine, N. B., Brooker, S., Tukahebwa, E. M., Kazibwe, F. and Onapa, A. W. (2004). Epidemiology and geography of Schistosoma mansoni in Uganda: implications for planning control. Tropical Medicine and International Health 9, 372380.CrossRefGoogle ScholarPubMed
Kristensen, T. K., Malone, J. B. and McCarroll, J. C. (2001). Use of satellite remote sensing and geographic information systems to model the distribution and abundance of snail intermediate hosts in Africa: a preliminary model for Biomphalaria pfeifferi in Ethiopia. Acta Tropica 79, 7378.CrossRefGoogle Scholar
Koukounari, A., Gabrielli, A. F., Toure, S., Bosque-Oliva, E., Zhang, Y., Sellin, B., Donnelly, C. A., Fenwick, A. and Webster, J. P. (2007). Schistosoma haematobium infection and morbidity before and after large-scale administration of praziquantel in Burkina Faso. Journal of Infectious Diseases 196, 659669.CrossRefGoogle ScholarPubMed
Liang, S., Seto, E. Y. W., Remais, J. V., Zhong, B., Yang, C., Hubbard, A., Davis, G. M., Gu, X. G., Qiu, D. C. and Spear, R. C. (2007). Environmental effects on parasitic disease transmission exemplified by schistosomiasis in western China. Proceedings of the National Academy of Sciences of the United States of America 104, 71107115.CrossRefGoogle ScholarPubMed
Lindsay, S. W. and Thomas, C. J. (2000). Mapping and estimating the population at risk from lymphatic filariasis in Africa. Transactions of the Royal Society of Tropical Medicine and Hygiene 94, 3745.CrossRefGoogle ScholarPubMed
Malone, J. B. (2005). Biology-based mapping of vector-borne parasites by geographic information systems and remote sensing. Parassitologia 47, 2750.Google ScholarPubMed
Malone, J. B., Huh, O. K., Fehler, D. P., Wilson, P. A., Wilensky, D. E., Holmes, R. A. and Elmagdoub, A. I. (1994). Temperature data from satellite imagery and the distribution of schistosomiasis in Egypt. American Journal of Tropical Medicine and Hygiene 50, 714722.CrossRefGoogle ScholarPubMed
Malone, J. B., Yilma, J. M., McCarroll, J. C., Erko, B., Mukaratirwa, S. and Zhou, X. Y. (2001). Satellite climatology and environmental risk of Schistosoma mansoni in Ethiopia and East Africa. Acta Tropica 79, 5972.CrossRefGoogle ScholarPubMed
Martens, W. J. M., Jetten, T. H. and Focks, D. A. (1997). Sensitivity of malaria, schistosomiasis and dengue to global warming. Climate Change 35, 145156.CrossRefGoogle Scholar
Matthys, B., Tschannen, A. B., Tian-Bi, N. T., Comoé, H., Diabaté, S., Traoré, M., Vounatsou, P., Raso, G., Gosoniu, L., Tanner, M., Cissé, G., N'Goran, E. K. and Utzinger, J. (2007). Risk factors for Schistosoma mansoni and hookworm in urban farming communities in western Côte d'Ivoire. Tropical Medicine and International Health 12, 709723.CrossRefGoogle ScholarPubMed
Moodley, I., Kleinschmidt, I., Sharp, B., Craig, M. and Appleton, C. (2003). Temperature-suitability maps for schistosomiasis in South Africa. Annals of Tropical Medicine and Parasitology 97, 617627.CrossRefGoogle ScholarPubMed
Mukaratirwa, S., Malone, J. B., McCarroll, J. C. and Kristensen, T. K. (1999). Satellite surveillance, geographical information systems and the seasonal suitability of environment for the development of the snail-parasite system of urinary and intestinal schistosomiasis in Zimbabwe. Proceedings of the Workshop on Medical and Veterinary Malacology in Africa, Harare, Zimbabwe, pp. 265271. Publication of the Danish Bilharziasis Laboratory, Copenhagen, Denmark.Google Scholar
Raso, G., Matthys, B., N'Goran, E. K., Tanner, M., Vounatsou, P. and Utzinger, J. (2005). Spatial risk prediction and mapping of Schistosoma mansoni infections among schoolchildren living in western Côte d'Ivoire. Parasitology 131, 97108.CrossRefGoogle ScholarPubMed
Raso, G., Vounatsou, P., Singer, B. H., N'Goran, E. K., Tanner, M. and Utzinger, J. (2006). An integrated approach for risk profiling and spatial prediction of Schistosoma mansoni-hookworm coinfection. Proceedings of the National Academy of Sciences, USA 103, 69346939.CrossRefGoogle ScholarPubMed
Rinaldi, L., Musella, V., Biggeri, A. and Cingoli, G. (2006). New insights into the application of geographical information systems and remote sensing in veterinary parasitology. Geospatial Health 1, 3347.CrossRefGoogle ScholarPubMed
Robinson, T. P. (2000). Spatial statistics and geographical information systems in epidemiology and public health. Advances in Parasitology 47, 81127.CrossRefGoogle ScholarPubMed
Simoonga, C., Kazembe, L. N., Kristensen, T. K., Olsen, A., Appleton, C. C., Mubita, P. and Mubila, L. (2008). The epidemiology and small-scale spatial heterogeneity of urinary schistosomiasis in Lusaka province, Zambia. Geospatial Health 3, 5767.CrossRefGoogle ScholarPubMed
Steinmann, P., Keiser, J., Bos, R., Tanner, M. and Utzinger, J. (2006). Schistosomiasis and water resources development: systematic review, meta-analysis, and estimates of people at risk. Lancet Infectious Diseases 6, 411425.CrossRefGoogle ScholarPubMed
Stensgaard, A., Jorgensen, A., Kabatereine, N. B., Malone, J. B. and Kristensen, T. K. (2005). Modelling the distribution of Schistosoma mansoni and host snails in Uganda using satellite sensor data and geographical information systems. Parassitologia 47, 115125.Google ScholarPubMed
Stensgaard, A., Jorgensen, A., Kabatereine, N. B., Rahbek, C. and Kristensen, T. K. (2006). Modeling freshwater snail habitat suitability and areas of potential snail-borne disease transmission in Uganda. Geospatial Health 1, 93104.CrossRefGoogle ScholarPubMed
Stensgaard, A. S., Saarnak, C. F. L., Utzinger, J., Vounatsou, P., Simoonga, C., Mushinge, G., , Rahbek, C., Møhlenberg, F. and Kristensen, T. K. (2009). Virtual globes and geospatial health: the potential of new tools in the management and control of vector-borne diseases. Geospatial Health 3, 127141.CrossRefGoogle ScholarPubMed
Stothard, J. R., Kabatereine, N. B., Tukahebwa, E. M., Kazibwe, F., Mathieson, W., Webster, J. P. and Fenwick, A. (2005). Field evaluation of the Meade Readiview handheld microscope for diagnosis of intestinal schistosomiasis in Uganda school children. American Journal of Tropical Medicine and Hygiene 73, 949955.CrossRefGoogle ScholarPubMed
Stothard, J. R., Mgeni, A. F., Khamis, S., Kristensen, T. K., Hubbard, S. J., Seto, E., Ramsan, M. and Rollinson, D. (2002). New insights into the transmission biology of urinary schistosomiasis in Zanzibar. Transactions of the Royal Society of Tropical Medicine and Hygiene 96, 470475.CrossRefGoogle ScholarPubMed
Taylor, M., Coovadia, H. M., Kvalsvig, J. D., Jinabhai, C. C. and Reddy, P. (1999). Helminth control as an entry point for health-promoting schools in Kwa Zulu-Natal. South African Medical Journal 89, 891892.Google Scholar
Utzinger, J., Müller, I., Vounatsou, P., Singer, B. H., N'Goran, E. K. and Tanner, M. (2003). Random spatial distribution of Schistosoma mansoni and hookworm infections among schoolchildren within a single village. Journal of Parasitology 89, 686692.CrossRefGoogle Scholar
Vounatsou, P., Raso, G., Tanner, M., N'Goran, E. K. and Utzinger, J. (2009). Bayesian geostatistical modelling for mapping schistosomiasis transmission. Parasitology 136, doi:10.1017/S003118200900599XCrossRefGoogle ScholarPubMed
Walsh, J. F., Molyneux, D. H. and Birley, M. H. (1993). Deforestation: effects on vector-borne disease. Parasitology 106 (Suppl.), S5575.CrossRefGoogle ScholarPubMed
WHO (2002). Prevention and control of schistosomiasis and soil-transmitted helminthiasis. First report of the joint WHO expert committees. WHO Technical Report Series 912, 157.Google Scholar
Yang, G. J., Vounatsou, P., Tanner, M., Zhou, X. N. and Utzinger, J. (2006). Remote sensing for predicting potential habitats of Oncomelania hupensis in Hongze, Baima and Gaoyou lakes in Jiangsu province, China. Geospatial Health 1, 8592.CrossRefGoogle ScholarPubMed
Yang, G. J., Vounatsou, P., Zhou, X. N., Utzinger, J. and Tanner, M. (2005). A review of geographic information system and remote sensing with applications to the epidemiology and control of schistosomiasis in China. Acta Tropica 96, 117129.CrossRefGoogle Scholar
Zhou, X. N., Yang, G. J., Yang, K., Wang, X. H., Hong, Q. B., Sun, L. P., Malone, J. B., Kristensen, T. K., Bergquist, N. R. and Utzinger, J. (2008). Potential impact of climate change on schistosomiasis transmission in China. American Journal of Tropical Medicine and Hygiene 78, 188194.CrossRefGoogle ScholarPubMed