Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T17:15:54.377Z Has data issue: false hasContentIssue false

Relations between resistance to chloroquine and acidification of endocytic vesicle of Plasmodium berghei

Published online by Cambridge University Press:  06 April 2009

J. Mahmalgi
Affiliation:
INSERM U.42, Biologie et Biochimie Parasitaire et Fongique, Villeneuve d'Ascq, FR
E. Veignie
Affiliation:
INSERM U.42, Biologie et Biochimie Parasitaire et Fongique, Villeneuve d'Ascq, FR
G. Prensier
Affiliation:
INSERM U.42, Biologie et Biochimie Parasitaire et Fongique, Villeneuve d'Ascq, FR
S. Moreau*
Affiliation:
INSERM U.42, Biologie et Biochimie Parasitaire et Fongique, Villeneuve d'Ascq, FR
*
*Reprint requests to Dr S. Moreau.

Summary

In order to visualize low-pH compartments of Plasmodium berghei strains we have used a basic congener of dinitrophenol, 3-(2,4-dinitroanilino)-3'-amino-N-methyldipropylamine (DAMP) which concentrates in acidic compartments, and can be detected by immunocytochemistry with anti-dinitrophenol antibodies. We have demonstrated that in a P. berghei chloroquine-sensitive strain (N strain), DAMP accumulates in the endocytic vacuoles where haemoglobin degradation is occurring. These compartments which have recently been shown to concentrate 4-aminoquinoline drugs (Moreau, Prensier, Maalla & Fortier, 1986) have an acidic pH. Conversely DAMP was found scattered all over the cytoplasm in a P. berghei chloroquine-resistant strain; the same phenomenon was previously observed (Moreau et al. 1986) in the localization of a 4-aminoquinoline on this same strain. Monensin-induced swelling of acidic compartments (Boss & Morre, 1984) was used as a complementary method for the determination of low-pH compartments on P. berghei strains. All the data reported here suggest that chloroquine resistance in P. berghei RC may be related to an impairment in the acidification of endocytic vesicles.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, R. G. W., Falck, J. R., Goldstein, J. L. & Brown, M. S. (1984). Visualization of acidic organelles in intact cells by electron microscopy. Proceedings of the National Academy of Sciences, USA 81, 4838–42.CrossRefGoogle ScholarPubMed
Anderson, R. G. W. & Pathok, R. K. (1985). Vesicles and cisternae in the trans Golgi apparatus of human fibroblasts are acidic compartments. Cell 40, 635–43.CrossRefGoogle ScholarPubMed
Boss, W. F. & Morre, D. J. (1984). Monensin-induced swelling of Golgi cisternae mediated by a proton gradient. European Journal of Cell Biology 34, 18.Google ScholarPubMed
Fleischman, J. B. & Eisen, H. E. (1975). Antigen recognition in delayed-type hypersensitivity. Cellular Immunology 15, 312–20.CrossRefGoogle ScholarPubMed
Griffiths, G., Brands, R., Burke, B., Louvard, D. & Waen, G. (1982). Viral membrane proteins acquire galactose in trans Golgi cisternae during intracellular transport. Journal of Cell Biology 95, 78.Google ScholarPubMed
Homewood, C. A., Warhurst, D. C., Peters, W. & Baggaley, V. C. (1972). Lysosome pH and the antimalarials. Nature, London 235, 50–2.CrossRefGoogle Scholar
Krogstad, D. J. & Schlesinger, P. H. (1987). The basis of antimalarial action: non-weak base effects of chloroquine on acid vesicle pH. American Journal of Tropical Medicine and Hygiene 36, 213–20.CrossRefGoogle ScholarPubMed
Krogstad, D. J., Gluzman, I. Y., Kyle, D. E., Oduola, A. M. J., Martin, S. K., Milhous, W. K. & Schlesinger, P. H. (1987). Efflux of chloroquine from Plasmodium falciparum: mechanism of chloroquine resistance. Science 238, 1283–5.CrossRefGoogle ScholarPubMed
Krogstad, D. J.Schlesinger, P. H. & Gluzman, I. Y. (1985). Antimalarial increase in vesicle pH in Plasmodium falciparum. Journal of Cell Biology 101, 2302–9.CrossRefGoogle ScholarPubMed
Ledger, P. W. & Tanzer, M. L. (1984). Monensin a perturbent of cellular physiology. Trends in Biochemical Sciences 313–14.CrossRefGoogle Scholar
Martin, S. K., Oduola, A. M. J. & Milhous, W. K. (1987). Reversal of chloroquine resistance in Plasmodium falciparum by Verapamil. Science 235, 899901.CrossRefGoogle ScholarPubMed
Mikkelsen, R. B., Tanabe, K. & Wallach, D. F. H. (1982). Membrane potential of Plasmodium infected erythrocytes. Journal of Cell Biology 93, 685–9.CrossRefGoogle ScholarPubMed
Moreau, S., Prensier, G., Maalla, J. & Fortier, B. (1986). Identification of distinct accumulation sites of 4-aminoquinoline in chloroquine sensitive and resistant Plasmodium berghei strains. European Journal of Cell Biology 42, 207–10.Google ScholarPubMed
Orci, L., Ravazzola, M. & Anderson, R. G. W. (1987). The condensing vacuole of exocrine cells is more acidic than the mature secretory vesicle. Nature, London 326, 77–9.CrossRefGoogle Scholar
Peters, W. (1965). Morphological and physiological variations in chloroquine resistant P. berghei (Vincke et Lips, 1948). Annales de la Société Belge de Médecine Tropicale 45, 365–78.Google Scholar
Peters, W., Fletcher, K. A. & Staubli, W. (1965). Phagotrophy and pigment formation in a chloroquine resistant strain of P. berghei Vincke and Lips 1948. Annals of Tropical Medicine and Parasitology 59, 126–35.CrossRefGoogle Scholar
Sandeaux, R., Sandeaux, J., Gavach, C. & Brun, B. (1982). Transport of Na by monensin across bimolecular lipid membranes. Biochimica et Biophysica Acta 684, 127–32.CrossRefGoogle Scholar
Slomianny, C., Charet, P. & Prensier, G. (1983). Ultrastructural localization of enzymes involved in the feeding process in P. chabaudi and Babesia hylomysci. Journal of Protozoology 30, 376–88.CrossRefGoogle Scholar
Slomianny, C., Prensier, C. & Charet, P. (1984). Relation between haemoglobin degradation and maturity of the red blood cell infected by P. berghei. Comparative Biochemical Physiology 78B, 891–6.Google ScholarPubMed
Slomianny, C., Prensier, G. & Charet, P. (1985 a). Etude ultrastructurale comparée du processus de dégradation de l'hémoglobine par P. berghei (Vincke et Lips, 1948) en fonction de l'état de maturité de la cellule hôte. Journal of Protozoology 32, 15.CrossRefGoogle Scholar
Slomianny, C., Prensier, G. & Charet, P. (1985 b). Ingestion of erythrocytic stroma by Plasmodium chabaudi trophozoites: ultrastructural study by serial sectioning and 3-dimensional reconstruction. Parasitology 90, 579–88.CrossRefGoogle ScholarPubMed
Slot, J. W. & Geuze, H. J. (1985). A new method of preparing gold probes for multiple-labeling cytochemistry. European Journal of Cell Biology 38, 8793.Google ScholarPubMed
Tokuyasu, K. T. J. (1983). Present state of immunocryomicrotomy. Journal of Histochemistry and Cytochemistry 31, 164–7.CrossRefGoogle Scholar
Vaitukaitis, J., Rollins, J. B., Niesclag, E. & Ross, T. G. (1971). A method for producing specific antisera with small doses of immunogen. Journal of Clinical Endocrinology 33, 988–91.CrossRefGoogle ScholarPubMed
Warhurst, D. C. (1986). Antimalarial schizonticides: why a permease is necessary. Parasitology Today 2, 331–4.CrossRefGoogle Scholar
Yayon, A., Cabantchik, Z. I. & Ginsburg, H. (1984). Identification of the acidic compartment of Plasmodium falciparum infected human erythrocytes as target of the antimalarial drug chloroquine. EMBO Journal 3, 2695–700.CrossRefGoogle ScholarPubMed