Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T00:39:06.274Z Has data issue: false hasContentIssue false

Rate of Leishmania-induced skin-lesion development in rodents depends on the site of inoculation

Published online by Cambridge University Press:  06 April 2009

C. E. Kirkpatrick
Affiliation:
Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
T. J. Nolan
Affiliation:
Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
J. P. Farrell
Affiliation:
Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA

Extract

Regional differences in the response of mice to infection with three strains of dermotropic Leishmania spp. were shown for skin covering the trunk. Lesions tended to appear earlier and to grow more rapidly on sites over the caudal half of the body than the cranial half, and caudal lesions were more likely than cranial ones to result in metastatic disease in susceptible strains of mice. Site-related variations in lesion development were observed in different strains of mice as well as in golden hamsters. The effect of these regional differences on the development of some parasite-specific, immunological reactions was examined, as were parasite thermosensitivity and location-related variations in host skin temperature as possible explanations.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Auerbach, R. & Auerbach, W. (1982). Regional differences in the growth of normal and neoplastic cells. Science 215, 127–34.CrossRefGoogle ScholarPubMed
Bergstresser, P. R., Toews, G. B., Gilliam, J. N. & Streilein, J. W. (1980). Unusual numbers and distributions of Langerhans cells in skin with unique immunologic properties. Journal of Investigative Dermatology 74, 312–14.CrossRefGoogle ScholarPubMed
Berman, J. D. & Neva, F. A. (1981). Effect of temperature on multiplication of Leishmania amastigotes within human monocyte-derived macrophages in vitro. American Journal of Tropical Medicine and Hygiene 30, 318–21.CrossRefGoogle ScholarPubMed
Biegel, D., Topper, G. & Rabinovitch, M. (1983). Leishmania mexicana: Temperature sensitivity of isolated amastigotes and of amastigotes infecting macrophages in culture. Experimental Parasitology 56, 289–97.CrossRefGoogle ScholarPubMed
Chang, K.-P. (1980). Human cutaneous leishmania in a mouse macrophage line: propagation and isolation of intracellular parasites. Science 209, 1240–2.CrossRefGoogle Scholar
Chen, H.-D. & Silvers, W. K. (1983). Influence of Langerhans cells on the survival of H-Y incompatible skin grafts in rats. Journal of Investigative Dermatology 81, 20–3.CrossRefGoogle ScholarPubMed
Chen, H., Yuan, J., Wang, Y. & Silvers, W. K. (1985). Distribution of ATPase-positive Langerhans cells in normal adult human skin. British Journal of Dermatology 113, 707–11.CrossRefGoogle ScholarPubMed
De Tolla, L. J., Scott, P. A. & Farrell, J. P. (1981). Single gene control of resistance to cutaneous leishmaniasis in mice. Immunogenetics 14, 2939.CrossRefGoogle ScholarPubMed
Giannini, M. S. H. (1986). Suppression of pathogenesis in cutaneous leishmaniasis by UV irradition. Infection and Immunity 51, 838–43.CrossRefGoogle Scholar
Granstein, R. D., Lowy, A. & Greene, M. I. (1984). Epidermal antigen-presenting cells in activation of suppression: identification of a new functional type of ultraviolet radiation-resistant epidermal cell. Journal of Immunology 132, 563–5.CrossRefGoogle ScholarPubMed
Handman, E., Ceredig, R. & Mitchell, G. F. (1979). Murine cutaneous leishmaniasis: disease patterns in intact and nude mice of various genotypes and examination of some differences between normal and infected macrophages. Australian Journal of Experimental Biology and Medical Science 57, 929.CrossRefGoogle ScholarPubMed
Handman, E. & Greenblatt, C. L. (1977). Promotion of leishmanial infections in non-permissive host macrophages by conditioned medium. Zeitschrift für Parasitenkunde 53, 143–7.CrossRefGoogle ScholarPubMed
Hashiguchi, Y., De Coronel, V. V. & Gomez Landires, E. A. (1984). An epidemiological study of leishmaniasis in a plantation ‘Cooperativa 23 de Febrero’ newly established in Ecuador. Japanese Journal of Parasitology 33, 393401.Google Scholar
Howard, J. G., Hale, C. & Chan-Liew, W. L. (1980). Immunological regulation of experimental cutaneous leishmaniasis. 1. Immunogenetic aspects of susceptibility to Leishmania tropica in mice. Parasite Immunology 2, 303–14.CrossRefGoogle ScholarPubMed
Howard, J. G., Hale, C. & Liew, F. Y. (1980). Genetically determined susceptibility to Leishmania tropica infection is expressed by haematopoietic donor cells in mouse radiation chimaeras. Nature, London 288, 161–2.CrossRefGoogle ScholarPubMed
Kirkpatrick, C. E. & Farrell, J. P. (1982). Leishmaniasis in beige mice. Infection and Immunity 38, 1208–16.CrossRefGoogle ScholarPubMed
Kirkpatrick, C. E., Farrell, J. P. & Goldschmidt, M. H. (1984). Leishmania chagasi and L. donovani: Experimental infections in domestic cats. Experimental Parasitology 58, 125–31.CrossRefGoogle ScholarPubMed
Lainson, R. & Strangways-Dixon, J. (1963). Leishmania mexicana: the epidemiology of dermal leishmaniasis in British Honduras. Transactions of the Royal Society of Tropical Medicine and Hygiene 57, 242–65.CrossRefGoogle Scholar
Lynch, D. H., Gurish, M. F. & Daynes, R. A. (1981). Relationship between epidermal Langerhans cell density ATPase activity and the induction of contact hypersensitivity. Journal of Immunology 126, 1892–7.CrossRefGoogle ScholarPubMed
McDougall, A. C. & Salter, D. C. (1977). Thermography of the nose and ear in relation to the skin lesions of lepromatous leprosy, tuberculosis, leishmaniasis, and lupus pernio. Journal of Investigative Dermatology 68, 1622.CrossRefGoogle Scholar
Mock, B. A., Fortier, A. H., Potter, M. & Nacy, C. A. (1985). Genetic control of systemic Leishmania major infections: dissociation of intrahepatic amastigote replication from control by the Lsh gene. Infection and Immunity 50, 588–91.CrossRefGoogle ScholarPubMed
Moriearty, P. L. & Grimaldi, G. Jr. (1983). Host factors influencing outcome of Leishmania mexicana infection in mice. Memorias do Instituto Oswaldo Cruz 78, 4959.CrossRefGoogle ScholarPubMed
Nacy, C. A., Meltzer, M. S., Leonard, E. J. & Wyler, D. J. (1981). Intracellular replication and lymphokine-induced destruction of Leishmania tropica in C3H/HeN mouse macrophages. Journal of Immunology 127, 2381–6.CrossRefGoogle ScholarPubMed
Neva, F. A., Petersen, E. A., Corsey, R., Bogaert, D. H. & Martinez, D. (1984). Observations on local heat treatment for cutaneous leishmaniasis. American Journal of Tropical Medicine and Hygiene 33, 800–1.CrossRefGoogle ScholarPubMed
Oosterhuis, J. W., Bagasra, O., Kushner, H., Fox, N. & Damjanov, I. (1983). The effects of regional factors on the growth rate and the differentiation of mouse teratocarcinoma. British Journal of Cancer 47, 407–11.CrossRefGoogle ScholarPubMed
Pérez, H., Labrador, F. & Torrealba, J. W. (1979). Variations in the response of five strains of mice to Leishmania mexicana. International Journal for Parasitology 9, 2732.CrossRefGoogle ScholarPubMed
Poulter, L. W. & Pandolph, C. R. (1982). Mechanisms of immunity to leishmaniasis. IV. Significance of lymphatic drainage from the site of infection. Clinical and Experimental Immunology 48, 396402.Google ScholarPubMed
Reed, S. G., Andrade, Z. A., Roters, S. B., Inverso, J. A. & Sadigursky, M. (1986). Leishmania mexicana amazonensis infections in ‘resistant’ inbred mice following removal of the draining lymph node. Clinical and Experimental Immunology 64, 813.Google ScholarPubMed
Sacks, D. L., Barral, A. & Neva, F. A. (1983). Thermosensitivity patterns of Old vs. New World cutaneous strains of Leishmania growing within mouse peritoneal macrophages in vitro. American Journal of Tropical Medicine and Hygiene 32, 300–4.CrossRefGoogle ScholarPubMed
Saxena, V. P. (1983). Temperature distribution in human skin and subdermal tissues. Journal of Theoretical Biology 102, 277–86.CrossRefGoogle ScholarPubMed
Scott, P. (1985). Impaired macrophage leishmanicidal activity at cutaneous temperature. Parasite Immunology 7, 277–88.CrossRefGoogle ScholarPubMed
Scott, P. A. & Farrell, J. P. (1982). Experimental cutaneous leishmaniasis: disseminated leishmaniasis in genetically susceptible and resistant mice. American Journal of Tropical Medicine and Hygiene 31, 230–8.CrossRefGoogle ScholarPubMed
Wilson, H. R., Dieckmann, B. S. & Childs, G. E. (1979). Leishmania braziliensis and Leishmania mexicana: Experimental cutaneous infections in golden hamsters. Experimental Parasitology 47, 270–83.CrossRefGoogle ScholarPubMed