Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-20T00:05:10.449Z Has data issue: false hasContentIssue false

Proteomics on the rims: insights into the biology of the nuclear envelope and flagellar pocket of trypanosomes

Published online by Cambridge University Press:  06 February 2012

MARK C. FIELD*
Affiliation:
Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, UK
VINCENT ADUNG'A
Affiliation:
Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, UK
SAMSON OBADO
Affiliation:
Laboratories of Cellular and Structural Biology, The Rockefeller University, New York, USA
BRIAN T. CHAIT
Affiliation:
Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, USA
MICHAEL P. ROUT
Affiliation:
Laboratories of Cellular and Structural Biology, The Rockefeller University, New York, USA
*
*Corresponding author: Phone: +44 (0)751-550-7880. E-mail: [email protected]

Summary

Trypanosomatids represent the causative agents of major diseases in humans, livestock and plants, with inevitable suffering and economic hardship as a result. They are also evolutionarily highly divergent organisms, and the many unique aspects of trypanosome biology provide opportunities in terms of identification of drug targets, the challenge of exploiting these putative targets and, at the same time, significant scope for exploration of novel and divergent cell biology. We can estimate from genome sequences that the degree of divergence of trypanosomes from animals and fungi is extreme, with perhaps one third to one half of predicted trypanosome proteins having no known function based on homology or recognizable protein domains/architecture. Two highly important aspects of trypanosome biology are the flagellar pocket and the nuclear envelope, where in silico analysis clearly suggests great potential divergence in the proteome. The flagellar pocket is the sole site of endo- and exocytosis in trypanosomes and plays important roles in immune evasion via variant surface glycoprotein (VSG) trafficking and providing a location for sequestration of various invariant receptors. The trypanosome nuclear envelope has been largely unexplored but, by analogy with higher eukaryotes, roles in the regulation of chromatin and most significantly, in controlling VSG gene expression are expected. Here we discuss recent successful proteomics-based approaches towards characterization of the nuclear envelope and the endocytic apparatus, the identification of conserved and novel trypanosomatid-specific features, and the implications of these findings.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, C. L., Goulding, D. and Field, M. C. (2003). Clathrin-mediated endocytosis is essential in Trypanosoma brucei. EMBO Journal 22, 49915002.CrossRefGoogle ScholarPubMed
Alsford, S., Turner, D. J., Obado, S. O., Sanchez-Flores, A., Glover, L., Berriman, M., Hertz-Fowler, C. and Horn, D. (2011). High-throughput phenotyping using parallel sequencing of RNA interference targets in the African trypanosome. Genome Research 21, 915924.CrossRefGoogle ScholarPubMed
Antinori, S., Schifanella, L. and Corbellino, M. (2011). Leishmaniasis: new insights from an old and neglected disease. European Journal of Clinical Microbiology and Infectious Diseases. DOI: 10.1007/s10096-011-1276-0.Google ScholarPubMed
Berriman, M. et al. (2005). The genome of the African trypanosome Trypanosoma brucei. Science 309, 416422.CrossRefGoogle ScholarPubMed
Borner, G. H., Harbour, M., Hester, S., Lilley, K. S. and Robinson, M. S. (2006). Comparative proteomics of clathrin-coated vesicles. Journal of Cell Biology 175, 571578.CrossRefGoogle ScholarPubMed
Brickman, M. J., Cook, J. M. and Balber, A. E. (1995). Low temperature reversibly inhibits transport from tubular endosomes to a perinuclear, acidic compartment in African trypanosomes. Journal of Cell Science 108, 3611–2361.CrossRefGoogle ScholarPubMed
Bridges., D. J., Pitt, A. R., Hanrahan, O., Brennan, K., Voorheis, H. P., Herzyk, P., de Koning, H. P. and Burchmore, R. J. (2008). Characterisation of the plasma membrane subproteome of bloodstream form Trypanosoma brucei. Proteomics 8, 8399.CrossRefGoogle ScholarPubMed
Broadhead, R., Dawe, H. R., Farr, H., Griffiths, S., Hart, S. R., Portman, N., Shaw, M. K., Ginger, M. L., Gaskell, S. J., McKean, P. G. and Gull, K. (2006). Flagellar motility is required for the viability of the bloodstream trypanosome. Nature 440, 224227.CrossRefGoogle ScholarPubMed
Camargo, E. P. (1999). Phytomonas and other trypanosomatid parasites of plants and fruit. Advances in Parasitology 42, 29112.CrossRefGoogle ScholarPubMed
Cassola, A., and Frasch, A. C. (2009). An RNA recognition motif mediates the nucleocytoplasmic transport of a trypanosome RNA-binding protein. Journal of Biological Chemistry 284, 3501535028.CrossRefGoogle ScholarPubMed
Chait, B. T. (2011). Mass spectrometry in the postgenomic era. Annual Reviews in Biochemistry 80, 239246.CrossRefGoogle ScholarPubMed
Chanez, A. L., Hehl, A. B., Engstler, M. and Schneider, A. (2006). Ablation of the single dynamin of T. brucei blocks mitochondrial fission and endocytosis and leads to a precise cytokinesis arrest. Journal of Cell Science 119, 29682974.CrossRefGoogle ScholarPubMed
Chung, W. L., Carrington, M. and Field, M. C. (2004). Carboxy-terminal targeting signals in transmembrane surface glycoproteins of Trypanosoma brucei. Journal of Biological Chemistry 279, 5488754895.CrossRefGoogle Scholar
Chung, W. L., Leung, K. F., Carrington, M. and Field, M. C. (2008). Position-specific ubiquitylation is required for internalisation and degradation of trans-membrane surface proteins in trypanosomes. Traffic 9, 16811697.CrossRefGoogle Scholar
Cristea, I. M., Williams, R., Chait, B. T. and Rout, M. P. (2005). Fluorescent proteins as proteomic probes. Molecular and Cellular Proteomics 4, 19331941.CrossRefGoogle ScholarPubMed
DeGrasse, J. A., Chait, B. T., Field, M. C. and Rout, M. P. (2008). High-yield isolation and subcellular proteomic characterization of nuclear and subnuclear structures from trypanosomes. Methods in Molecular Biology 463, 7792.CrossRefGoogle ScholarPubMed
DeGrasse, J. A. and Devos, D. (2010). A functional proteomic study of the Trypanosoma brucei nuclear pore complex: an informatic strategy. Methods in Molecular Biology 673, 231238.CrossRefGoogle ScholarPubMed
DeGrasse, J. A., DuBois, K. N., Devos, D., Siegel, T. N., Sali, A., Field, M. C., Rout, M. P. and Chait, B. T. (2009). Evidence for a shared nuclear pore complex architecture that is conserved from the last common eukaryotic ancestor. Molecular and Cellular Proteomics 8, 21192130.CrossRefGoogle ScholarPubMed
Duttagupta, S., Gupta, S. and Gupta, A. (2004). Euglenoid blooms in the floodplain wetlands of Barak Valley, Assam, North eastern India. Journal of Environmental Biology 25, 369373.Google ScholarPubMed
Engstler, M., Pfohl, T., Herminghaus, S., Boshart, M., Wiegertjes, G., Heddergott, N. and Overath, P. (2007). Hydrodynamic flow-mediated protein sorting on the cell surface of trypanosomes. Cell 131, 505515.CrossRefGoogle ScholarPubMed
Engstler, M., Thilo, L., Weise, F., Grünfelder, C. G., Schwarz, H., Boshart, M. and Overath, P. (2004). Kinetics of endocytosis and recycling of the GPI-anchored variant surface glycoprotein in Trypanosoma brucei. Journal of Cell Science 117, 1105–1015.CrossRefGoogle ScholarPubMed
Field, M. C. and Carrington, M. (2009). The trypanosome flagellar pocket. Nature Reviews in Microbiology 7, 775786.CrossRefGoogle ScholarPubMed
Field, M. C., Gabernet-Castello, C. and Dacks, J. B. (2007). Reconstructing the evolution of the endocytic system: insights from genomics and molecular cell biology. Advances in Experimental Medicine and Biology 607, 8496.CrossRefGoogle ScholarPubMed
Field, M. C., Lumb, J. H., Adung'a, V. O., Jones, N. G. and Engstler, M. (2009). Macromolecular trafficking and immune evasion in African trypanosomes. International Review of Cell and Molecular Biology 278, 167.CrossRefGoogle ScholarPubMed
Gabernet-Castello, C., Dacks, J. B. and Field, M. C., (2009). The single ENTH-domain protein of trypanosomes; endocytic functions and evolutionary relationship with epsin. Traffic 10, 894911.CrossRefGoogle ScholarPubMed
Gabernet-Castello, C., Dubois, K. N., Nimmo, C. and Field, M. C. (2011). Rab11 function in Trypanosoma brucei; identification of conserved and novel interaction partners. Eukaryotic Cell 10, 10821094.CrossRefGoogle ScholarPubMed
Grünfelder, C. G., Engstler, M., Weise, F., Schwarz, H., Stierhof, Y. D., Morgan, G. W., Field, M. C. and Overath, P. (2003). Endocytosis of a glycosylphosphatidylinositol-anchored protein via clathrin-coated vesicles, sorting by default in endosomes, and exocytosis via RAB11-positive carriers. Molecular Biology of the Cell 14, 20292040.CrossRefGoogle ScholarPubMed
Hotez, P. J. and Gurwith, M. (2011). Europe's neglected infections of poverty. International Journal of Infectious Diseases 15, e6119.CrossRefGoogle ScholarPubMed
Kawahara, T., Siegel, T. N., Ingram, A. K., Alsford, S., Cross, G. A. and Horn, D. (2008). Two essential MYST-family proteins display distinct roles in histone H4K10 acetylation and telomeric silencing in trypanosomes. Molecular Microbiology 69, 10541068.CrossRefGoogle ScholarPubMed
Kolev, N. G., Franklin, J. B., Carmi, S., Shi, H., Michaeli, S. and Tschudi, C. (2010). The transcriptome of the human pathogen Trypanosoma brucei at single-nucleotide resolution. PLoS Pathogens 6, e1001090.CrossRefGoogle ScholarPubMed
Leung, K. F., Riley, F., Carrington, M. and Field, M. C. (2011). Ubiquitylation as a general mechanism for internalisation of trans-membrane domain surface proteins in trypanosomes. Eukaryotic Cell 10, 916931.CrossRefGoogle Scholar
Luz Ambrósio, D., Lee, J. H., Panigrahi, A. K., Nguyen, T. N., Cicarelli, R. M. and Günzl, A. (2009) Spliceosomal proteomics in Trypanosoma brucei reveal new RNA splicing factors. Eukaryotic Cell 8, 9901000.CrossRefGoogle ScholarPubMed
Magez, S. and Radwanska, M. (2009). African trypanosomiasis and antibodies: implications for vaccination, therapy and diagnosis. Future Microbiology 4, 10751087.CrossRefGoogle ScholarPubMed
Mans, B. J., Anantharaman, V., Aravind, L. and Koonin, E. V. (2004). Comparative genomics, evolution and origins of the nuclear envelope and nuclear pore complex. Cell Cycle. 3, 16121637.CrossRefGoogle ScholarPubMed
Marchetti, M. A., Tschudi, C., Kwon, H., Wolin, S. L. and Ullu, E. (2000). Import of proteins into the trypanosome nucleus and their distribution at karyokinesis. Journal of Cell Science 113, 899906.CrossRefGoogle ScholarPubMed
Morgan, G. W., Allen, C. L., Jeffries, T. R., Hollinshead, M. and Field, M. C. (2001). Developmental and morphological regulation of clathrin-mediated endocytosis in Trypanosoma brucei. Journal of Cell Science 114, 26052615.CrossRefGoogle ScholarPubMed
Morgan, G. W., Goulding, D. and Field, M. C. (2004). The single dynamin-like protein of Trypanosoma brucei regulates mitochondrial division and is not required for endocytosis. Journal of Biological Chemistry 279, 1069210701.CrossRefGoogle Scholar
Natesan, S. K., Peacock, L., Leung, K. F., Gibson, W. and Field, M. C. (2010). Evidence that low endocytic activity is not directly responsible for human serum resistance in the insect form of African trypanosomes. BMC Research Notes 3, 63.CrossRefGoogle Scholar
Oberholzer, M., Langousis, G., Nguyen, H. T., Saada, E. A., Shimogawa, M. M., Jonsson, Z. O., Nguyen, S. M., Wohlschlelgel, J. A. and Hill, K. L. (2011). Independent analysis of the flagellum surface and matrix proteomes provides insight into flagellum signaling in mammalian-infectious Trypanosoma brucei. Molecular and Cellular Proteomics 10, M111.010538.CrossRefGoogle ScholarPubMed
Oberholzer, M., Morand, S., Kunz, S. and Seebeck, T. (2006). A vector series for rapid PCR-mediated C-terminal in situ tagging of Trypanosoma brucei genes. Molecular and Biochemical Parasitology 145, 117120.CrossRefGoogle ScholarPubMed
Oeffinger, M., Wei, K. E., Rogers, R., DeGrasse, J. A., Chait, B. T., Aitchison, J. D., and Rout, M. P. (2007). Comprehensive analysis of diverse ribonucleoprotein complexes. Nature Methods 4, 951956.CrossRefGoogle ScholarPubMed
Pal, A., Hall, B. S., Jeffries, T. R. and Field, M. C. (2003). Rab5 and Rab11 mediate transferrin and anti-variant surface glycoprotein antibody recycling in Trypanosoma brucei. Biochemical Journal 374, 443451.CrossRefGoogle ScholarPubMed
Panigrahi, A. K., Ernst, N. L., Domingo, G. J., Fleck, M., Salavati, R. and Stuart, K. D. (2006). Compositionally and functionally distinct editosomes in Trypanosoma brucei. RNA 12, 10381049.CrossRefGoogle ScholarPubMed
Panigrahi, A. K., Ogata, Y., Zíková, A., Anupama, A., Dalley, R. A., Acestor, N., Myler, P. J. and Stuart, K. D. (2009). A comprehensive analysis of Trypanosoma brucei mitochondrial proteome. Proteomics 9, 434450.CrossRefGoogle ScholarPubMed
Parsons, M., Worthey, E. A., Ward, P. N. and Mottram, J. C. (2005). Comparative analysis of the kinomes of three pathogenic trypanosomatids: Leishmania major, Trypanosoma brucei and Trypanosoma cruzi. BMC Genomics 6, 127.CrossRefGoogle ScholarPubMed
Rothnie, A., Clarke, A. R., Kuzmic, P., Cameron, A. and Smith, C. J. (2011). A sequential mechanism for clathrin cage disassembly by 70-kDa heat-shock cognate protein (Hsc70) and auxilin. Proceedings of the National. Academy of Sciences, USA 108, 6927–3692.CrossRefGoogle ScholarPubMed
Rout, M. P. and Field, M. C. (2001). Isolation and characterization of subnuclear compartments from Trypanosoma brucei. Identification of a major repetitive nuclear lamina component. Journal of Biological Chemistry 276, 3826138271.CrossRefGoogle Scholar
Simarro, P. P., Cecchi, G., Paone, M., Franco, J. R., Diarra, A., Ruiz, J. A., Fèvre, E. M., Courtin, F., Mattioli, R. C. and Jannin, J. G. (2010). The atlas of human African trypanosomiasis: a contribution to global mapping of neglected tropical diseases. International Journal of Health Geographics 9, 57.CrossRefGoogle ScholarPubMed
Wickstead, B., Carrington, J. T., Gluenz, E. and Gull, K. (2010). The expanded Kinesin-13 repertoire of trypanosomes contains only one mitotic Kinesin indicating multiple extra-nuclear roles. PLoS One 5, e15020.CrossRefGoogle ScholarPubMed
Wilkinson, S. R. and Kelly, J. M. (2009). Trypanocidal drugs: mechanisms, resistance and new targets. Expert Reviews in Molecular Medicine 11, e31.CrossRefGoogle ScholarPubMed
Will, E. and Gallwitz, D. (2001). Biochemical characterization of Gyp6p, a Ypt/Rab-specific GTPase-activating protein from yeast. Journal of Biological Chemistry 276, 1213512139.CrossRefGoogle ScholarPubMed
Wu, Y. W., Tan, K. T., Waldmann, H., Goody, R. S. and Alexandrov, K. (2007). Interaction analysis of prenylated Rab GTPase with Rab escort protein and GDP dissociation inhibitor explains the need for both regulators. Proceedings of the National Academy of Sciences, USA 104, 1229412299.CrossRefGoogle ScholarPubMed