Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T16:11:12.305Z Has data issue: false hasContentIssue false

Proteinase activity in the plerocercoid of Proteocephalus ambloplitis (Cestoda)

Published online by Cambridge University Press:  06 April 2009

M. Polzer
Affiliation:
Lehrstuhl för Spezielle Zoologie und Parasitologie, Ruhr-Universität Bochum, 44780 Bochum, Germany
R. M. Overstreet
Affiliation:
Gulf Coast Research Laboratory, Ocean Springs, Mississippi 39566, USA
H. Taraschewski
Affiliation:
Zoologisches Institut, Universität Karlsruhe, 76128 Karlsruhe, Germany

Summary

Host invasion and tissue migration of several helminths have been linked to expression and release of parasite-derived proteinases. The plerocercoid of the cestode Proteocephalus ambloplitis can migrate into the visceral organs or, in the case of bass, from them into the intestinal tract of the same individual fish. It does this within a few hours, aided by secretion of a substance from its apical gland. Proteinase activity in this plerocercoid, obtained from the host liver, was defined by pH optimum, by substrate and inhibitor specificity, and by electrophoretic and chromatographic techniques. Homogenates of plerocercoid contained a metalloproteinase exhibiting a molecular weight of 30000 determined by gelatin substrate gel electrophoresis. Peak activity of this proteolytic enzyme in gel filtration fractions when azocoll was used as substrate then corresponded to a molecular weight of 31500. The proteinase showed collagenolytic, haemoglobinolytic and slight elastinolytic activity, and it had a pH optimum at 9·0. Enzyme activity could be inhibited by various chelating agents. The metalloproteinase identified in this study constitutes the only enzyme class present in this larval stage of P. ambloplitis. We suggest that the plerocercoid's metalloproteinase is the substance secreted from the apical organ, necessary for the previously recognized tissue migration phase. This enzyme might also have a nutritional function.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Coggins, J. R. (1980 a). Apical end organ structure and histochemistry in plerocercoids of Proteocephalus ambloplitis. International Journal for Parasitology 10, 97101.CrossRefGoogle Scholar
Coggins, J. R. (1980 b). Tegument and apical end organ fine structure in the metacestode and adult Proteocephalus ambloplitis. International Journal for Parasitology 10, 409–18.CrossRefGoogle Scholar
Douch, P. G. C. (1978). L-Ieucyl-β-naphtylamidases of the cestode, Moniezia expansa, and the nematode, Ascaris suum. Comparative and Biochemical Physiology 60B, 63–6.Google Scholar
Esch, G. W. & Huffines, W. J. (1973). Histopathology associated with endoparasitic helminths in bass. Journal of Parasitology 59, 306–13.CrossRefGoogle ScholarPubMed
Fischer, H. & Freeman, R. S. (1969). Penetration of parenteral plerocercoids of Proteocephalus ambloplitis (Leidy) into the gut of smallmouth bass. Journal of Parasitology 55, 766–74.CrossRefGoogle Scholar
Fischer, H. & Freeman, R. S. (1973). The role of plerocercoids in the biology of Proteocephalus ambloplitis (Cestoda) maturing in smallmouth bass. Canadian Journal of Zoology 51, 131–41.CrossRefGoogle ScholarPubMed
Fukase, T., Matsuda, Y., Akihama, S. & Itagaki, H. (1985). Purification and some properties of cysteine protease of Spirometra erinacei plerocercoid (Cestoda: Diphyllobothriidae). Japanese Journal of Parasitology 34, 351–60.Google Scholar
Houseman, J. G. & Downe, A. E. R. (1980). Endoproteinase activity in the posterior midgut of Rhodnius prolixus Stal (Hemiptera: Reduviidae). Insect Biochemistry 10, 363–6.CrossRefGoogle Scholar
Jilek, R. & Crites, J. L. (1980). Scanning electron microscopic examination of the scolex and external tegumental surface of Proteocephalus ambloplitis. Journal of Microscopy 118, 443–6.CrossRefGoogle Scholar
Joy, J. E. & Madan, E. (1989). Pathology of black bass hepatic tissue infected with larvae of the tapeworm Proteocephalus ambloplitis. Journal of Fish Biology 35, 111–18.CrossRefGoogle Scholar
Kwa, B. H. (1972). Studies on the sparganum of Spirometra erinacei. II. Proteolytic enzyme(s) in the scolex. International Journal for Parasitology 2, 2933.CrossRefGoogle ScholarPubMed
Larue, G. (1909). On the morphology and development of a new cestode of the genus Proteocephalus Weinland. Transactions of the American Microscopical Society 29, 1749.CrossRefGoogle Scholar
McCormick, J. H. & Stokes, G. N. (1982). Intraovarian invasion of smallmouth bass oocytes by Proteocephalus ambloplitis (Cestoda). Journal of Parasitology 68, 973–5.CrossRefGoogle Scholar
Read, S. M. & Northcote, D. H. (1981). Minimization of variation in the response to different proteins of the Coomassie blue G dye-binding assay for protein. Analytical Biochemistry 116, 5364.CrossRefGoogle ScholarPubMed
Song, C. Y., Choi, D. H., Kim, T. S. & Lee, S. H. (1992). Isolation and partial characterization of cysteine proteinase from sparganum. Korean Journal of Parasitology 30, 191–9.CrossRefGoogle ScholarPubMed
White, A. C., Molinari, J. L., Pillai, A. V. & Rege, A. A. (1992). Detection and preliminary characterization of Taenia solium metacestode proteases. Journal of Parasitology 78, 281–7.CrossRefGoogle ScholarPubMed
Wood, D. E. (1965). Nature of the end organ in Ophiotaenia filaroides (La Rue). Journal of Parasitology 51, 541–4.CrossRefGoogle ScholarPubMed