Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-22T11:53:01.280Z Has data issue: false hasContentIssue false

Progress and prospects for targeting Hsp90 to treat fungal infections

Published online by Cambridge University Press:  20 February 2014

AMANDA VERI
Affiliation:
Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
LEAH E. COWEN*
Affiliation:
Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
*
* Corresponding author: Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 4368, Toronto, Ontario M5S 1A8, Canada. E-mail: [email protected]

Summary

Fungal pathogens pose a major threat to human health worldwide. They infect billions of people each year, leading to at least 1·5 million deaths. Treatment of fungal infections is difficult due to the limited number of clinically useful antifungal drugs, and the emergence of drug resistance. A promising new strategy to enhance the efficacy of antifungal drugs and block the evolution of drug resistance is to target the molecular chaperone Hsp90. Pharmacological inhibitors of Hsp90 function that are in development as anticancer agents have potential to be repurposed as agents for combination antifungal therapy for some applications, such as biofilm infections. For systemic infections, however, effective combination therapy regimens may require Hsp90 inhibitors that can selectively target Hsp90 in the pathogen, or alternate strategies to compromise function of the Hsp90 chaperone machine. Selectively impairing Hsp90 function in the pathogen could in principle be achieved by targeting Hsp90 co-chaperones or regulators of Hsp90 function that are more divergent between pathogen and host than Hsp90. Antifungal combination therapies could also exploit downstream effectors of Hsp90 that are critical for fungal drug resistance and virulence. Here, we discuss the progress and prospects for establishing Hsp90 as an important therapeutic target for life-threatening fungal infections.

Type
Special Issue Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bader, T., Bodendorfer, B., Schroppel, K. and Morschhauser, J. (2003). Calcineurin is essential for virulence in Candida albicans . Infection and Immunity 71, 53445354.Google Scholar
Blankenship, J. R. and Mitchell, A. P. (2006). How to build a biofilm: a fungal perspective. Current Opinion in Microbiology 9, 588594.CrossRefGoogle ScholarPubMed
Blankenship, J. R., Steinbach, W. J., Perfect, J. R. and Heitman, J. (2003). Teaching old drugs new tricks: reincarnating immunosuppressants as antifungal drugs. Current Opinion in Investigational Drugs 4, 192199.Google Scholar
Bock, C. and Lengauer, T. (2012). Managing drug resistance in cancer: lessons from HIV therapy. Nature Reviews Cancer 12, 494501. doi: 10.1038/nrc3297.Google Scholar
Brown, G. D., Denning, D. W., Gow, N. A., Levitz, S. M., Netea, M. G. and White, T. C. (2012 a). Hidden killers: human fungal infections. Science Translational Medicine 4, 165rv113. doi: 10.1126/scitranslmed.3004404.Google Scholar
Brown, G. D., Denning, D. W. and Levitz, S. M. (2012 b). Tackling human fungal infections. Science 336, 647. doi: 10.1126/science.1222236.Google Scholar
Bruno, V. M. and Mitchell, A. P. (2005). Regulation of azole drug susceptibility by Candida albicans protein kinase CK2. Moecular Microbiology 56, 559573.Google ScholarPubMed
Byrnes, E. J. III, Bartlett, K. H., Perfect, J. R. and Heitman, J. (2011). Cryptococcus gattii: an emerging fungal pathogen infecting humans and animals. Microbes and Infection 13, 895907. doi: 10.1016/j.micinf.2011.05.009.CrossRefGoogle ScholarPubMed
Centers for Disease Control and Prevention (2013). Antibiotic Resistance Threats in the United States, 2013. U.S. Deparment of Health and Human Services. Centers for Disease Control and Prevention, Atlanta, USA.Google Scholar
Chan, C. T., Reeves, R. E., Geller, R., Yaghoubi, S. S., Hoehne, A., Solow-Cordero, D. E., Chiosis, G., Massoud, T. F., Paulmurugan, R. and Gambhir, S. S. (2012). Discovery and validation of small-molecule heat-shock protein 90 inhibitors through multimodality molecular imaging in living subjects. Proceedings of the National Academy of Sciences USA 109, E2476E2485. doi: 10.1073/pnas.1205459109.Google Scholar
Chen, Y. L., Brand, A., Morrison, E. L., Silao, F. G., Bigol, U. G., Malbas, F. F. Jr., Nett, J. E., Andes, D. R., Solis, N. V., Filler, S. G., Averette, A. and Heitman, J. (2011). Calcineurin controls drug tolerance, hyphal growth, and virulence in Candida dubliniensis . Eukaryotic Cell 10, 803819. doi: 10.1128/EC.00310-10.Google Scholar
Chen, Y. L., Konieczka, J. H., Springer, D. J., Bowen, S. E., Zhang, J., Silao, F. G., Bungay, A. A., Bigol, U. G., Nicolas, M. G., Abraham, S. N., Thompson, D. A., Regev, A. and Heitman, J. (2012). Convergent evolution of calcineurin pathway roles in thermotolerance and virulence in Candida glabrata . G3:Genes, Genomes, Genetics 2, 675691. doi: 10.1534/g3.112.002279.Google Scholar
Chen, Y. L., Lehman, V. N., Lewit, Y., Averette, A. F. and Heitman, J. (2013). Calcineurin governs thermotolerance and virulence of Cryptococcus gattii . G3:Genes, Genomes, Genetics 3, 527539. doi: 10.1534/g3.112.004242.Google Scholar
Cowen, L. E. (2008). The evolution of fungal drug resistance: modulating the trajectory from genotype to phenotype. Nature Reviews Microbiology 6, 187198.Google Scholar
Cowen, L. E. (2009). Hsp90 orchestrates stress response signaling governing fungal drug resistance. PLoS Pathogens 5, e1000471. doi: 10.1371/journal.ppat.1000471.Google Scholar
Cowen, L. E. (2013). The fungal Achilles’ heel: targeting Hsp90 to cripple fungal pathogens. Current Opinion in Microbiology 16, 377384. doi: 10.1016/j.mib.2013.03.005.Google Scholar
Cowen, L. E. and Lindquist, S. (2005). Hsp90 potentiates the rapid evolution of new traits: drug resistance in diverse fungi. Science 309, 21852189.Google Scholar
Cowen, L. E. and Steinbach, W. J. (2008). Stress, drugs, and evolution: the role of cellular signaling in fungal drug resistance. Eukaryotic Cell 7, 747764.Google Scholar
Cowen, L. E., Carpenter, A. E., Matangkasombut, O., Fink, G. R. and Lindquist, S. (2006). Genetic architecture of Hsp90-dependent drug resistance. Eukaryotic Cell 5, 21842188.Google Scholar
Cowen, L. E., Singh, S. D., Kohler, J. R., Collins, C., Zaas, A. K., Schell, W. A., Aziz, H., Mylonakis, E., Perfect, J. R., Whitesell, L. and Lindquist, S. (2009). Harnessing Hsp90 function as a powerful, broadly effective therapeutic strategy for fungal infectious disease. Proceedings of the National Academy of Sciences USA 106, 2828–2823. doi: 10.1073/pnas.0813394106.Google Scholar
Cruz, M. C., Goldstein, A. L., Blankenship, J. R., Del Poeta, M., Davis, D., Cardenas, M. E., Perfect, J. R., McCusker, J. H. and Heitman, J. (2002). Calcineurin is essential for survival during membrane stress in Candida albicans . EMBO Journal 21, 546559.Google Scholar
d'Enfert, C. (2006). Biofilms and their role in the resistance of pathogenic Candida to antifungal agents. Current Drug Targets 7, 465470.Google Scholar
Diezmann, S., Michaut, M., Shapiro, R. S., Bader, G. D. and Cowen, L. E. (2012). Mapping the Hsp90 genetic interaction network in Candida albicans reveals environmental contingency and rewired circuitry. PLoS Genetics 8, e1002562. doi: 10.1371/journal.pgen.1002562.Google Scholar
Donlin, L. T., Andresen, C., Just, S., Rudensky, E., Pappas, C. T., Kruger, M., Jacobs, E. Y., Unger, A., Zieseniss, A., Dobenecker, M. W., Voelkel, T., Chait, B. T., Gregorio, C. C., Rottbauer, W., Tarakhovsky, A. and Linke, W. A. (2012). Smyd2 controls cytoplasmic lysine methylation of Hsp90 and myofilament organization. Genes and Development 26, 114119. doi: 10.1101/gad.177758.111.Google Scholar
Eastman, R. T. and Fidock, D. A. (2009). Artemisinin-based combination therapies: a vital tool in efforts to eliminate malaria. Nature Reviews Microbiology 7, 864874. doi: 10.1038/nrmicro2239.CrossRefGoogle ScholarPubMed
Falsone, S. F., Leptihn, S., Osterauer, A., Haslbeck, M. and Buchner, J. (2004). Oncogenic mutations reduce the stability of SRC kinase. Journal of Molecular Biology 344, 281291.Google Scholar
Finkel, J. S. and Mitchell, A. P. (2011). Genetic control of Candida albicans biofilm development. Nature Reviews Microbiology 9, 109118. doi: 10.1038/nrmicro2475.Google Scholar
Fisher, M. C., Henk, D. A., Briggs, C. J., Brownstein, J. S., Madoff, L. C., McCraw, S. L. and Gurr, S. J. (2012). Emerging fungal threats to animal, plant and ecosystem health. Nature 484, 186194. doi: 10.1038/nature10947.Google Scholar
Gerik, K. J., Donlin, M. J., Soto, C. E., Banks, A. M., Banks, I. R., Maligie, M. A., Selitrennikoff, C. P. and Lodge, J. K. (2005). Cell wall integrity is dependent on the PKC1 signal transduction pathway in Cryptococcus neoformans . Molecular Microbiology 58, 393408. doi: 10.1111/j.1365-2958.2005.04843.x.Google Scholar
Gow, N. A., van de Veerdonk, F. L., Brown, A. J. and Netea, M. G. (2012). Candida albicans morphogenesis and host defence: discriminating invasion from colonization. Nature Reviews Microbiology 10, 112122. doi: 10.1038/nrmicro2711.Google Scholar
Imai, J. and Yahara, I. (2000). Role of HSP90 in salt stress tolerance via stabilization and regulation of calcineurin. Molecular and Cellular Biology 20, 92629270.Google Scholar
Jarosz, D. F. and Lindquist, S. (2010). Hsp90 and environmental stress transform the adaptive value of natural genetic variation. Science 330, 18201824. doi: 10.1126/science.1195487.Google Scholar
Johnson, J. L. and Brown, C. (2009). Plasticity of the Hsp90 chaperone machine in divergent eukaryotic organisms. Cell Stress and Chaperones 14, 8394. doi: 10.1007/s12192-008-0058-9.Google Scholar
Juvvadi, P. R., Gehrke, C., Fortwendel, J. R., Lamoth, F., Soderblom, E. J., Cook, E. C., Hast, M. A., Asfaw, Y. G., Moseley, M. A., Creamer, T. P. and Steinbach, W. J. (2013). Phosphorylation of calcineurin at a novel serine-proline rich region orchestrates hyphal growth and virulence in Aspergillus fumigatus . PLoS Pathogens 9, e1003564. doi: 10.1371/journal.ppat.1003564.Google Scholar
Kovacs, J. J., Murphy, P. J., Gaillard, S., Zhao, X., Wu, J. T., Nicchitta, C. V., Yoshida, M., Toft, D. O., Pratt, W. B. and Yao, T. P. (2005). HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Molecular and Cellular Biology 18, 601607.Google Scholar
LaFayette, S. L., Collins, C., Zaas, A. K., Schell, W. A., Betancourt-Quiroz, M., Gunatilaka, A. A., Perfect, J. R. and Cowen, L. E. (2010). PKC signaling regulates drug resistance of the fungal pathogen Candida albicans via circuitry comprised of Mkc1, calcineurin, and Hsp90. PLoS Pathogens 6, e1001090. doi: 10.1371/journal.ppat.1001069.Google Scholar
Lamoth, F., Juvvadi, P. R., Gehrke, C. and Steinbach, W. J. (2012). In vitro activity of calcineurin and heat-shock protein 90 (Hsp90) inhibitors against Aspergillus fumigatus azole- and echinocandin-resistant strains. Antimicrobial Agents and Chemotherapy 57, 10351039. doi: 10.1128/AAC.01857-12.Google Scholar
Leach, M. D., Klipp, E., Cowen, L. E. and Brown, A. J. (2012). Fungal Hsp90: a biological transistor that tunes cellular outputs to thermal inputs. Nature Reviews Microbiology 10, 693704. doi: 10.1038/nrmicro2875.CrossRefGoogle ScholarPubMed
Lin, S. J., Schranz, J. and Teutsch, S. M. (2001). Aspergillosis case-fatality rate: systematic review of the literature. Clinical Infectious Diseases 32, 358366. doi: 10.1086/318483.Google Scholar
Martinez-Ruiz, A., Villanueva, L., Gonzalez de Orduna, C., Lopez-Ferrer, D., Higueras, M. A., Tarin, C., Rodriguez-Crespo, I., Vazquez, J. and Lamas, S. (2005). S-nitrosylation of Hsp90 promotes the inhibition of its ATPase and endothelial nitric oxide synthase regulatory activities. Proceedings of the National Academy of Sciences USA 102, 85258530. doi: 10.1073/pnas.0407294102.CrossRefGoogle ScholarPubMed
McClellan, A. J., Xia, Y., Deutschbauer, A. M., Davis, R. W., Gerstein, M. and Frydman, J. (2007). Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches. Cell 131, 121135. doi: 10.1016/j.cell.2007.07.036.Google Scholar
Miller, L. G., Hajjeh, R. A. and Edwards, J. E. Jr. (2001). Estimating the cost of nosocomial candidemia in the United States. Clinical Infectious Diseases 32, 1110. doi: 10.1086/319613.Google Scholar
Millson, S. H., Truman, A. W., King, V., Prodromou, C., Pearl, L. H. and Piper, P. W. (2005). A two-hybrid screen of the yeast proteome for Hsp90 interactors uncovers a novel Hsp90 chaperone requirement in the activity of a stress-activated mitogen-activated protein kinase, Slt2p (Mpk1p). Eukaryotic Cell 4, 849860. doi: 10.1128/EC.4.5.849-860.2005.Google Scholar
Miyazaki, T., Inamine, T., Yamauchi, S., Nagayoshi, Y., Saijo, T., Izumikawa, K., Seki, M., Kakeya, H., Yamamoto, Y., Yanagihara, K., Miyazaki, Y. and Kohno, S. (2010 a). Role of the Slt2 mitogen-activated protein kinase pathway in cell wall integrity and virulence in Candida glabrata . FEMS Yeast Research 10, 343352. doi: 10.1111/j.1567-1364.2010.00611.x.Google Scholar
Miyazaki, T., Yamauchi, S., Inamine, T., Nagayoshi, Y., Saijo, T., Izumikawa, K., Seki, M., Kakeya, H., Yamamoto, Y., Yanagihara, K., Miyazaki, Y. and Kohno, S. (2010 b). Roles of calcineurin and Crz1 in antifungal susceptibility and virulence of Candida glabrata . Antimicrobial Agents and Chemotherapy 54, 16391643. doi: 10.1128/AAC.01364-09.Google Scholar
Mollapour, M., Tsutsumi, S., Donnelly, A. C., Beebe, K., Tokita, M. J., Lee, M. J., Lee, S., Morra, G., Bourboulia, D., Scroggins, B. T., Colombo, G., Blagg, B. S., Panaretou, B., Stetler-Stevenson, W. G., Trepel, J. B., Piper, P. W., Prodromou, C., Pearl, L. H. and Neckers, L. (2010). Swe1Wee1-dependent tyrosine phosphorylation of Hsp90 regulates distinct facets of chaperone function. Molecular Cell 37, 333343.Google Scholar
Mollapour, M., Tsutsumi, S., Truman, A. W., Xu, W., Vaughan, C. K., Beebe, K., Konstantinova, A., Vourganti, S., Panaretou, B., Piper, P. W., Trepel, J. B., Prodromou, C., Pearl, L. H. and Neckers, L. (2011). Threonine 22 phosphorylation attenuates Hsp90 interaction with cochaperones and affects its chaperone activity. Molecular Cell 41, 672681. doi: 10.1016/j.molcel.2011.02.011.Google Scholar
Money, N. P. (2007). The Triumph of the Fungi: A Rotten History. Oxford University Press, New York, NY, USA.Google Scholar
Murphy, P. J., Morishima, Y., Kovacs, J. J., Yao, T. P. and Pratt, W. B. (2005). Regulation of the dynamics of Hsp90 action on the glucocorticoid receptor by acetylation/deacetylation of the chaperone. Journal of Biological Chemistry 280, 3379233799.Google Scholar
Neckers, L. and Workman, P. (2012). Hsp90 molecular chaperone inhibitors: are we there yet? Clinical Cancer Research 18, 6476. doi: 10.1158/1078-0432.CCR-11-1000.Google Scholar
Nett, J. and Andes, D. (2006). Candida albicans biofilm development, modeling a host-pathogen interaction. Current Opinion in Microbiology 9, 340345.Google Scholar
Noble, S. M., French, S., Kohn, L. A., Chen, V. and Johnson, A. D. (2010). Systematic screens of a Candida albicans homozygous deletion library decouple morphogenetic switching and pathogenicity. Nature Genetics 42, 590598. doi: 10.1038/ng.605.Google Scholar
Pallavi, R., Roy, N., Nageshan, R. K., Talukdar, P., Pavithra, S. R., Reddy, R., Venketesh, S., Kumar, R., Gupta, A. K., Singh, R. K., Yadav, S. C. and Tatu, U. (2010). Heat shock protein 90 as a drug target against protozoan infections: biochemical characterization of HSP90 from Plasmodium falciparum and Trypanosoma evansi and evaluation of its inhibitor as a candidate drug. Journal of Biological Chemistry 285, 3796437975. doi: 10.1074/jbc.M110.155317.Google Scholar
Patel, P. D., Yan, P., Seidler, P. M., Patel, H. J., Sun, W., Yang, C., Que, N. S., Taldone, T., Finotti, P., Stephani, R. A., Gewirth, D. T. and Chiosis, G. (2013). Paralog-selective Hsp90 inhibitors define tumor-specific regulation of HER2. Nature Chemical Biology 9, 677684. doi: 10.1038/nchembio.1335.Google Scholar
Pfaller, M. A. and Diekema, D. J. (2007). Epidemiology of invasive candidiasis: a persistent public health problem. Clinical Microbiology Reviews 20, 133163.Google Scholar
Pfaller, M. A. and Diekema, D. J. (2010). Epidemiology of invasive mycoses in North America. Critical Reviews in Microbiology 36, 153.Google Scholar
Pizarro, J. C., Hills, T., Senisterra, G., Wernimont, A. K., Mackenzie, C., Norcross, N. R., Ferguson, M. A., Wyatt, P. G., Gilbert, I. H. and Hui, R. (2013). Exploring the Trypanosoma brucei Hsp83 potential as a target for structure guided drug design. PLoS Neglected Tropical Diseases 7, e2492. doi: 10.1371/journal.pntd.0002492.Google Scholar
Queitsch, C., Sangster, T. A. and Lindquist, S. (2002). Hsp90 as a capacitor of phenotypic variation. Nature 417, 618624.Google Scholar
Ramage, G., Mowat, E., Jones, B., Williams, C. and Lopez-Ribot, J. (2009). Our current understanding of fungal biofilms. Critical Reviews in Microbiology 35, 340355. doi: 10.3109/10408410903241436.Google Scholar
Reedy, J. L., Filler, S. G. and Heitman, J. (2010). Elucidating the Candida albicans calcineurin signaling cascade controlling stress response and virulence. Fungal Genetics and Biology 47, 107116. doi: 10.1016/j.fgb.2009.09.002.Google Scholar
Robbins, N., Uppuluri, P., Nett, J., Rajendran, R., Ramage, G., Lopez-Ribot, J. L., Andes, D. and Cowen, L. E. (2011). Hsp90 governs dispersion and drug resistance of fungal biofilms. PLoS Pathogens 7, e1002257. doi: 10.1371/journal.ppat.1002257.Google Scholar
Robbins, N., Leach, M. D. and Cowen, L. E. (2012). Lysine deacetylases Hda1 and Rpd3 regulate Hsp90 function thereby governing fungal drug resistance. Cell Reports 2, 878888. doi: 10.1016/j.celrep.2012.08.035.Google Scholar
Rutherford, S. L. (2003). Between genotype and phenotype: protein chaperones and evolvability. Nature Reviews Genetics 4, 263274.CrossRefGoogle ScholarPubMed
Rutherford, S. L. and Lindquist, S. (1998). Hsp90 as a capacitor for morphological evolution. Nature 396, 336342.Google Scholar
Sanglard, D., Ischer, F., Marchetti, O., Entenza, J. and Bille, J. (2003). Calcineurin A of Candida albicans: involvement in antifungal tolerance, cell morphogenesis and virulence. Molecular Microbiology 48, 959976.CrossRefGoogle ScholarPubMed
Sangster, T. A., Lindquist, S. and Queitsch, C. (2004). Under cover: causes, effects and implications of Hsp90-mediated genetic capacitance. BioEssays 26, 348362.CrossRefGoogle ScholarPubMed
Sangster, T. A., Salathia, N., Lee, H. N., Watanabe, E., Schellenberg, K., Morneau, K., Wang, H., Undurraga, S., Queitsch, C. and Lindquist, S. (2008 a). HSP90-buffered genetic variation is common in Arabidopsis thaliana . Proceedings of the National Academy of Sciences USA 105, 29692974. doi: 10.1073/pnas.0712210105.Google Scholar
Sangster, T. A., Salathia, N., Undurraga, S., Milo, R., Schellenberg, K., Lindquist, S. and Queitsch, C. (2008 b). HSP90 affects the expression of genetic variation and developmental stability in quantitative traits. Proceedings of the National Academy of Sciences USA 105, 29632968. doi: 10.1073/pnas.0712200105.Google Scholar
Scroggins, B. T., Robzyk, K., Wang, D., Marcu, M. G., Tsutsumi, S., Beebe, K., Cotter, R. J., Felts, S., Toft, D., Karnitz, L., Rosen, N. and Neckers, L. (2007). An acetylation site in the middle domain of Hsp90 regulates chaperone function. Molecular Cell 25, 151159.Google Scholar
Shahinas, D., Liang, M., Datti, A. and Pillai, D. R. (2010). A repurposing strategy identifies novel synergistic inhibitors of Plasmodium falciparum heat shock protein 90. Journal of Medicinal Chemistry 53, 35523557. doi: 10.1021/jm901796s.Google Scholar
Shahinas, D., Macmullin, G., Benedict, C., Crandall, I. and Pillai, D. R. (2012). Harmine is a potent antimalarial targeting Hsp90 and synergizes with chloroquine and artemisinin. Antimicrobial Agents and Chemotherapy 56, 42074213. doi: 10.1128/AAC.00328-12.Google Scholar
Shahinas, D., Folefoc, A., Taldone, T., Chiosis, G., Crandall, I. and Pillai, D. R. (2013). A purine analog synergizes with chloroquine (CQ) by targeting Plasmodium falciparum Hsp90 (PfHsp90). PLoS ONE 8, e75446. doi: 10.1371/journal.pone.0075446.Google Scholar
Shapiro, R. S., Uppuluri, P., Zaas, A. K., Collins, C., Senn, H., Perfect, J. R., Heitman, J. and Cowen, L. E. (2009). Hsp90 orchestrates temperature-dependent Candida albicans morphogenesis via Ras1-PKA signaling. Current Biology 19, 621629.Google Scholar
Shapiro, R. S., Robbins, N. and Cowen, L. E. (2011). Regulatory circuitry governing fungal development, drug resistance, and disease. Microbiology and Molecular Biology Reviews 75, 213267. doi: 10.1128/MMBR.00045-10.Google Scholar
Shapiro, R. S., Sellam, A., Tebbji, F., Whiteway, M., Nantel, A. and Cowen, L. E. (2012 a). Pho85, Pcl1, and Hms1 signaling governs Candida albicans morphogenesis induced by high temperature or Hsp90 compromise. Current Biology 22, 461470. doi: 10.1016/j.cub.2012.01.062.Google Scholar
Shapiro, R. S., Zaas, A. K., Betancourt-Quiroz, M., Perfect, J. R. and Cowen, L. E. (2012 b). The Hsp90 co-chaperone Sgt1 governs Candida albicans morphogenesis and drug resistance. PLoS ONE 7, e44734. doi: 10.1371/journal.pone.0044734.Google Scholar
Singh, S. D., Robbins, N., Zaas, A. K., Schell, W. A., Perfect, J. R. and Cowen, L. E. (2009). Hsp90 governs echinocandin resistance in the pathogenic yeast Candida albicans via calcineurin. PLoS Pathogens 5, e1000532. doi: 10.1371/journal.ppat.1000532.Google Scholar
Singh-Babak, S. D., Babak, T., Diezmann, S., Hill, J. A., Xie, J. L., Chen, Y. L., Poutanen, S. M., Rennie, R. P., Heitman, J. and Cowen, L. E. (2012). Global analysis of the evolution and mechanism of echinocandin resistance in Candida glabrata . PLoS Pathogens 8, e1002718. doi: 10.1371/journal.ppat.1002718.Google Scholar
Sollars, V., Lu, X., Xiao, L., Wang, X., Garfinkel, M. D. and Ruden, D. M. (2003). Evidence for an epigenetic mechanism by which Hsp90 acts as a capacitor for morphological evolution. Nature Genetics 33, 7074.Google Scholar
Southworth, D. R. and Agard, D. A. (2008). Species-dependent ensembles of conserved conformational states define the Hsp90 chaperone ATPase cycle. Molecular Cell 32, 631640. doi: 10.1016/j.molcel.2008.10.024.Google Scholar
Specchia, V., Piacentini, L., Tritto, P., Fanti, L., D'Alessandro, R., Palumbo, G., Pimpinelli, S. and Bozzetti, M. P. (2010). Hsp90 prevents phenotypic variation by suppressing the mutagenic activity of transposons. Nature 463, 662665. doi: 10.1038/nature08739.Google Scholar
Steinbach, W. J., Cramer, R. A. Jr., Perfect, B. Z., Asfaw, Y. G., Sauer, T. C., Najvar, L. K., Kirkpatrick, W. R., Patterson, T. F., Benjamin, D. K. Jr., Heitman, J. and Perfect, J. R. (2006). Calcineurin controls growth, morphology, and pathogenicity in Aspergillus fumigatus . Eukaryotic Cell 5, 10911103.Google Scholar
Steinbach, W. J., Reedy, J. L., Cramer, R. A. Jr., Perfect, J. R. and Heitman, J. (2007). Harnessing calcineurin as a novel anti-infective agent against invasive fungal infections. Nature Reviews Microbiology 5, 418430.Google Scholar
Taipale, M., Jarosz, D. F. and Lindquist, S. (2010). HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nature Reviews Molecular Cell Biology 11, 515528. doi: 10.1038/nrm2918.CrossRefGoogle ScholarPubMed
Tariq, M., Nussbaumer, U., Chen, Y., Beisel, C. and Paro, R. (2009). Trithorax requires Hsp90 for maintenance of active chromatin at sites of gene expression. Proceedings of the National Academy of Sciences USA 106, 11571162. doi: 10.1073/pnas.0809669106.Google Scholar
Trepel, J., Mollapour, M., Giaccone, G. and Neckers, L. (2010). Targeting the dynamic HSP90 complex in cancer. Nature Reviews Cancer 10, 537549. doi: 10.1038/nrc2887.Google Scholar
Xu, W., Mollapour, M., Prodromou, C., Wang, S., Scroggins, B. T., Palchick, Z., Beebe, K., Siderius, M., Lee, M. J., Couvillon, A., Trepel, J. B., Miyata, Y., Matts, R. and Neckers, L. (2012). Dynamic tyrosine phosphorylation modulates cycling of the HSP90-P50(CDC37)-AHA1 chaperone machine. Molecular Cell 47, 434443. doi: 10.1016/j.molcel.2012.05.015.Google Scholar
Xu, Y. and Lindquist, S. (1993). Heat-shock protein Hsp90 governs the activity of pp60v-src kinase. Proceedings of the National Academy of Sciences USA 90, 70747078.Google Scholar
Xu, Y., Singer, M. A. and Lindquist, S. (1999). Maturation of the tyrosine kinase c-src as a kinase and as a substrate depends on the molecular chaperone Hsp90. Proceedings of the National Academy of Sciences USA 96, 109114.Google Scholar
Zhang, J., Silao, F. G., Bigol, U. G., Bungay, A. A., Nicolas, M. G., Heitman, J. and Chen, Y. L. (2012). Calcineurin is required for pseudohyphal growth, virulence, and drug resistance in Candida lusitaniae . PLoS ONE 7, e44192. doi: 10.1371/journal.pone.0044192.Google Scholar
Zhao, R., Davey, M., Hsu, Y. C., Kaplanek, P., Tong, A., Parsons, A. B., Krogan, N., Cagney, G., Mai, D., Greenblatt, J., Boone, C., Emili, A. and Houry, W. A. (2005). Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the Hsp90 chaperone. Cell 120, 715727.Google Scholar
Zumla, A., Hafner, R., Lienhardt, C., Hoelscher, M. and Nunn, A. (2012). Advancing the development of tuberculosis therapy. Nature Reviews Drug Discovery 11, 171172. doi: 10.1038/nrd3694.Google Scholar