Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-05T16:02:11.343Z Has data issue: false hasContentIssue false

Production and immunological characterization of a recombinant subunit of a Loa loa polyprotein antigen

Published online by Cambridge University Press:  05 May 2010

G. BLAMPAIN AZZIBROUCK
Affiliation:
Département de Parasitologie Médicale, Centre International de Recherches Médicales de Franceville (CIRMF), B.P. 769Franceville, Gabon Université François Rabelais de Tours, Département de médecine Tropicale et de Mycologie Tours, France
J. P. AKUE*
Affiliation:
Département de Parasitologie Médicale, Centre International de Recherches Médicales de Franceville (CIRMF), B.P. 769Franceville, Gabon
D. RICHARD LENOBLE
Affiliation:
Université François Rabelais de Tours, Département de médecine Tropicale et de Mycologie Tours, France
*
*Corresponding author: Centre International de Recherches Médicales de Franceville, B.P. 769, Franceville, Gabon. Tel: +241 67 70 92. Fax: +241 67 72 95. E-mail: [email protected]

Summary

Diagnosis of loiasis and analysis of the specific immune response are limited by a paucity of parasite material. To circumvent this problem, a Loa loa antigen has been expressed in a prokaryote vector (pTrcHis). Immunization of Balb/c mice with this soluble recombinant protein produced a strong antibody response, with antibodies recognizing 2 major bands of 38 and 20 kDa in a native crude extract of Loa loa adult worms and microfilariae on Western blots. The target molecule was located mainly in the hypodermis and cuticle of the adult worm. Analysis of human IgG subclasses against this antigen by enzyme-linked immunosorbent assay (ELISA) showed IgG1, IgG2 and IgG3 but not IgG4 reactivity. IgG2 against this recombinant antigen was 100% specific for loiasis when tested against samples from European donor individuals. The same IgG2 antibodies showed 91% specificity for loiasis by comparison with Wuchereria bancrofti, Onchocerca volvulus, Mansonnella perstans and other helminth infections. Furthermore, the IgG2 antibody level correlated with the density of Loa loa microfilariae (r=0·400; P=0·02). This recombinant 15r3 molecule and specific IgG2 assay may be useful for monitoring control programmes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aalberse, R. C., Van Der Gaa, G. R. and Van Leeuwen, J. (1993). Serological aspects of IgG4 antibodies. I. Immunization results in an IgG4-restricted response. Journal of Immunology 130, 772–726.Google Scholar
Akue, J. P., Egwang, T. G. and Devaney, E. (1994). High levels of parasite-specific IgG4 in the absence of microfilaremia in Loa loa infection. Tropical Medicine and Parasitology 45, 246248.Google ScholarPubMed
Akue, J. P., Devaney, E., Wahl, G. and Moukana, H. (2002). Expression of filarial-specific IgG subclasses under different transmission intensities in a region endemic for loiasis. American Journal of Tropical Medicine and Hygiene 66, 245250.CrossRefGoogle Scholar
Ajuh, P. M., Akue, J. P., Boutin, P, Everaere, S. and Egwang, T. G. (1995). Loa loa: Structural diversity of a 15 kDa repetitive antigen. Experimental Parasitology 81, 145153.CrossRefGoogle ScholarPubMed
Burbelo, P. D., Roshan, Ramanathan, Klion, A. D., Iadarola, M. J. and Nutman, T. B. (2008). Rapid, novel, specific, high-throughput assay for diagnosis of Loa loa infection. Journal of Clinical Microbiology 46, 22982304.CrossRefGoogle ScholarPubMed
Boussinesq, M. (2006). Loiasis. Annals of Tropical Medicine and Parasitology 100, 715731.CrossRefGoogle ScholarPubMed
Boussinesq, M., Gordon, J., Gardon-Wendel, N., Kamgno, J., Ngoumou, P. and Chippaux, J. P. (1998). Three probable cases of Loa loa encephalopathy following ivermectin treatment for onchocerciasis. American Journal of Tropical Medicine and Hygiene 58, 461469.CrossRefGoogle ScholarPubMed
Boulestiex, G. and Carme, B. (1986). Encephalite au cours du traitement de la filariose à L. loa par la diethylcarbamazine. A propos de 6 observations. Bulletin de la Société de Pathology Exotique 79, 649654.Google Scholar
Bradford, M. (1976). A rapid sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein-dye binding. Analytical Biochemistry 72, 248254.CrossRefGoogle ScholarPubMed
Dafa'Alla, T. H., Ghalib, H. W., Abdelmageed, A. and William, J. F. (1992). The profile of IgG subclasses of onchocerciasis patients. Clinical and Experimental Immunology 88, 258263.CrossRefGoogle ScholarPubMed
Davis, L. G., Dibner, M. D. and Battey, J. F. (1986). Basic Methods in Molecular Biology. Elsevier, Amsterdam, The Netherlands.Google Scholar
Dupont, A., Zué-Ndong, J. and Pinder, M. (1988). Common occurrence of amicrofilaremic Loa loa filariasis within the endemic region. Transaction of the Royal Society of Tropical Medicine and Hygiene 82, 730.CrossRefGoogle Scholar
Edelmann, L. and Ruf, A. (1996). Freeze-dried human leukocytes stabilised with uranyl acetate during low temperature embedding or with OsO4 vapour after embedding. Scanning Microscopy Supplement 10, 295307.Google ScholarPubMed
Egwang, T. G., Pinder, M. and Akue, J. P. (1990). Loa loa identification of genomic clones expressing recombinant antigens. Experimental Parasitology 70, 490493.CrossRefGoogle ScholarPubMed
Engevall, E. and Perlmann, P. (1971). Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G.. Immunochemistry 8, 871874.CrossRefGoogle Scholar
Fain, A. (1981). Epidémiologie de la loase. Annales de la Societé Belge de Médecine Tropicale 61, 277285.Google Scholar
Gordon, J., Gardon-Wendel, N., Demanga-Ngangue, , Kamgno, J., Chippaux, J. P. and Boussinesq, M. (1997). Serious reaction after mass treatment of onchocerciasis with ivermectin in an area for Loa loa infection. Lancet 350, 1822.CrossRefGoogle Scholar
Kiss, J. and McDonald, K. (1993). Electron microscopy immunocytochemistry following cryofixation and freeze substitution. Methods in Cell Biology 37, 311341.CrossRefGoogle ScholarPubMed
Klion, A. D., Vijaykumar, A., Oei, T., Martin, B. and Nutman, T. B. (2003). Serum immunoglobulin G4 antibodies to the recombinant antigen, Ll-SXP-1, are highly specific for Loa loa infection. Journal of Infectious Diseases 187, 128133.CrossRefGoogle Scholar
MacDonald, A. J., Turaga, P. S., Harman-Brown, C., Tierney, T. J., Benett, K. E., Mc Cathy, , McSimonek, S. C., Enyong, P. A., Mokatte, D. W. and Lustigman, S. (2002). Differential cytokine and antibody response to adult and larval stages of Onchocerca volvulus consistent with the development of concomitant immunity. Infection and Immunity 70, 27962804.CrossRefGoogle ScholarPubMed
Laemmli, U. K. (1970). Cleavage of structure proteins during the assembly of head of bacteriophage T4. Nature, London 227, 680685.CrossRefGoogle ScholarPubMed
Paxton, W. A., Yazdanbakhsh, M., Kurniawan, A., Partono, F., Maizels, R. M. and Selkirk, M. E. (1993). Primary structure of and immunoglobulin E response to the repeat subunit of gp15/400 from human lymphatic filarial parasites. Infection and Immunity 61, 28272833.CrossRefGoogle Scholar
Pinder, M., Leclerc, A. and Everaere, S. (1992). Antibody-dependent cell-mediated immune reactions to Loa loa microfilariae in amicrofilaraemic subjects. Parasite Immunology 14, 541556.CrossRefGoogle ScholarPubMed
Poole, C. B., Grandea, A. G., Maina, C. V., Jenkins, R. E., Selkirk, M. E. and McReynolds, L. A. (1992). Cloning of a cuticular antigen that contains multiple tandem repeats from the filarial parasite Dirofilaria immitis. Proceedings of the National Academy of Sciences, USA 89, 59865990.CrossRefGoogle ScholarPubMed
Spence, H. J., Moore, J., Brass, A. and Kennedy, M. W. (1993). A cDNA encoding repeating units of the ABA-1 allergen of Ascaris. Molecular and Biochemical Parasitology 57, 339344.CrossRefGoogle ScholarPubMed
Tezuka, H., Imai, S., Muto, R., Furuhashi, Y. and Fujita, K. (2002). Recombinant Dirofilaria immitis polyprotein that stimulates murine B cells to produce nonspecific polyclonal immunoglobulin E antibody. Infection and Immunity 70, 12351244.CrossRefGoogle ScholarPubMed
Timanova, A., Muller, S., Marti, T., Bankov, I. and Walter, R. D. (1999). Ascaris galli fatty acid binding protein, a member of the nematode polyprotein allergen family. European Journal of Biochemistry 261, 569576.CrossRefGoogle Scholar
Touré, F. S., Egwang, T. G., Wahl, G., Millet, P., Bain, O. and Georges, A. J. (1997). Specific-specific sequence in the repeat 3 region of the gene encoding a putative Loa loa allergen: A diagnostic tool for occult loaisis. American Journal of Tropical Medicine and Hygiene 60, 5657.Google Scholar
Towbin, H. Z., Staehelin, T. and Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences, USA 76, 43504354.CrossRefGoogle ScholarPubMed
Van Hoegaerden, M., Chabaud, B., Akué, J. P. and Ivanoff, B. (1987). Filariasis due to Loa loa and Mansonella perstans: distribution in the region of Okondja, Haut-Ogooué province, Gabon, with parasitological and serological follow up over one year. Transaction of the Royal Society of Tropical Medicine and Hygiene 81, 441446.CrossRefGoogle ScholarPubMed
Van Hoegaerden, M. and Ivanoff, B. (1986). A rapid simple method for isolation of viable microfilariae. American Journal of Tropical Medicine and Hygiene 35, 148151.CrossRefGoogle ScholarPubMed
Vercauteren, I., Geldhof, P., Vercruysse, J., Peelaers, I., Van Den Broeck, W., Gevaert, K. and Claerebout, E. (2004). Vaccination with an Ostertagia ostertagi polyprotein allergen protects calves against homologous challenge infection. Infection and Immunity 72, 29953001.CrossRefGoogle ScholarPubMed