Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T00:27:30.642Z Has data issue: false hasContentIssue false

Processing of the precursor to the major merozoite surface antigens of Plasmodium falciparum

Published online by Cambridge University Press:  06 April 2009

A. A. Holder
Affiliation:
Department of Molecular Biology, Wellcome Biotech, Langley Court, Beckenham, Kent BR3 3BS
J. S. Sandhu
Affiliation:
Department of Molecular Biology, Wellcome Biotech, Langley Court, Beckenham, Kent BR3 3BS
Yvonne Hillman
Affiliation:
Department of Molecular Biology, Wellcome Biotech, Langley Court, Beckenham, Kent BR3 3BS
Lynne S. Davey
Affiliation:
Department of Molecular Biology, Wellcome Biotech, Langley Court, Beckenham, Kent BR3 3BS
S. C. Nicholls
Affiliation:
Department of Molecular Biology, Wellcome Biotech, Langley Court, Beckenham, Kent BR3 3BS
Helen Cooper
Affiliation:
Department of Molecular Biology, Wellcome Biotech, Langley Court, Beckenham, Kent BR3 3BS
M. J. Lockyer
Affiliation:
Department of Molecular Biology, Wellcome Biotech, Langley Court, Beckenham, Kent BR3 3BS

Summary

Specific sequences derived from the gene for the precursor to the major merozoite surface antigens (PMMSA) of Plasmodium falciparum have been expressed in Escherichia coli and the products have been used to produce antibodies. These antibodies, together with monoclonal antibodies, have been used to investigate the form of the PMMSA protein associated with merozoites. Polypeptide fragments derived by processing from the PMMSA protein have been detected in extracts of merozoites and assigned to locations within the PMMSA coding sequence.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, G. A., Paynter, C. A. & Winther, M. D. (1985). Production of epidermal growth factor in Escherichia coli from a synthetic gene. Journal of Cell Science, Suppl. 3, 2938.CrossRefGoogle ScholarPubMed
Archer, D. B., Rodwell, A. W. & Rodwell, E. S. (1978). The nature and location of Acholeplasma laidlawii membrane proteins investigated by two-dimensional gel electrophoresis. Biochimica et Biophysica Acta 513, 268–83.CrossRefGoogle ScholarPubMed
Chen, E. Y. & Seeburg, P. H. (1985). Supercoil sequencing: a fast and simple method for sequencing plasmid DNA. DNA 4, 165–70.CrossRefGoogle ScholarPubMed
Cheung, A., Shaw, A. R., Leban, J. & Perrin, L. H. (1985). Cloning and expression in Escherichia coli of a surface antigen of Plasmodium falciparum merozoites. EMBO Journal 4, 1007–12.CrossRefGoogle ScholarPubMed
Freeman, R. R. & Holder, A. A. (1983 a). Surface antigens of malaria merozoites. A high molecular weight precursor is processed to an 83,000-mol wt form expressed on the surface of Plasmodium falciparum merozoites. Journal of Experimental Medicine 158, 1647–53.CrossRefGoogle Scholar
Freeman, R. R. & Holder, A. A. (1983 b). Characteristics of the protective response of BALB/c mice immunized with a purified Plasmodium yoelii schizont antigen. Clinical and Experimental Immunology 54, 609–16.Google ScholarPubMed
Hall, R., Osland, A., Hyde, J. E., Simmons, D. L., Hope, I. A. & Scaife, J. G. (1984). Processing, polymorphism, and biological significance of P.190, a major surface antigen of the erthrocytic forms of Plasmodium falciparum. Molecular and Biochemical Parasitology 11, 6180.CrossRefGoogle Scholar
Heidrich, H.-G., Strych, W. & Mrema, J. E. K. (1983). Identification of surface and internal antigens from spontaneously released Plasmodium falciparum merozoites by radioiodination and metabolic labelling. Zeitschrift für Parasitenkunde 69, 715–25.CrossRefGoogle ScholarPubMed
Holder, A. A. & Freeman, R. R. (1982). Biosynthesis and processing of a Plasmodium falciparum schizont antigen recognized by immune serum and a monoclonal antibody. Journal of Experimental Medicine 156, 1528–38.CrossRefGoogle ScholarPubMed
Holder, A. A. & Freeman, R. R. (1984). The three major antigens on the surface of Plasmodium falciparum merozoites are derived from a single high molecular weight precursor. Journal of Experimental Medicine 160, 624–9.CrossRefGoogle ScholarPubMed
Holder, A. A., Lockyer, M. J., Odink, K. G., Sandhu, J. S., Riveros-Moreno, V., Nicholls, S. C., Hillman, Y., Davey, L. S., Tizard, M. L. V., Schwarz, R. T. & Freeman, R. R. (1985). Primary structure of the precursor to the three major surface antigens of Plasmodium falciparum merozoites. Nature, London 317, 270–3.CrossRefGoogle Scholar
Howard, R. F., Stanley, H. A., Campbell, G. H., Langreth, S. G. & Reese, R. T. (1985). Two Plasmodium falciparum merozoite surface polypeptides share epitopes with a single M r 185,000 parasite glycoprotein. Molecular and Biochemical Parasitology 17, 6177.CrossRefGoogle Scholar
Howard, R. J., Lyon, J. A., Diggs, C. L., Haynes, J. D., Leech, J. H., Barnwell, J. W., Aley, S. B., Aikawa, M. & Miller, L. H. (1984). Localization of the major Plasmodium falciparum glycoprotein on the surface of mature intracellular trophozoites and schizonts. Molecular and Biochemical Parasitology 11, 349–62.CrossRefGoogle ScholarPubMed
Lyon, J. A., Geller, R. H., Haynes, J. D., Chulay, J. D. & Weber, J. L. (1986). Epitope map and processing scheme for the 195,000-dalton surface glycoprotein of Plasmodium falciparum merozoites deduced from cloned overlapping segments of the gene. Proceedings of the National Academy of Sciences, USA 83, 2989–93.CrossRefGoogle ScholarPubMed
Mackay, M., Goman, M., Bone, N., Hyde, J. E., Scaife, J., Certa, U., Stunnenberg, H. & Bujard, H. (1985). Polymorphism of the precursor for the major surface antigens of Plasmodium falciparum merozoites: studies at the genetic level. EMBO Journal 4, 3823–9.CrossRefGoogle ScholarPubMed
Maniatis, T., Fritsch, E. F. & Sambrook, J. (1982). Molecular Cloning. A Laboratory Manual. New York: Cold Spring Harbor Laboratory, Cold Spring Harbor.Google Scholar
Odink, K. G., Lockyer, M. J., Nicholls, S. C., Hillman, Y., Freeman, R. R. & Holder, A. A. (1984). Expression of cloned cDNA for a major surface antigen of Plasmodium falciparum merozoites. FEBS Letters 173, 108–12.CrossRefGoogle Scholar
Schwarz, R. T., Riveros-Moreno, V., Lockyer, M. J., Nicholls, S. C., Davey, L. S., Hillman, Y., Sandhu, J. S., Freeman, R. R. & Holder, A. A. (1986). Structural diversity of the major antigen of Plasmodium falciparum merozoites. Molecular and Cellular Biology 6, 964–8.Google ScholarPubMed
Steers, E., Cuatrecasas, P. & Pollard, H. B. (1971). The purification of β–galactosidase from Escherichia coli by affinity chromatography. Journal of Biological Chemistry 246, 196200.CrossRefGoogle ScholarPubMed
Weber, J. L., Leininger, W. M. & Lyon, J. A. (1986). Variation in the gene encoding a major merozoite surface antigen of the human malaria parasite Plasmodium falciparum. Nucleic Acids Research 14, 3311–23.CrossRefGoogle Scholar
Winther, M. D., Allen, G., Bomford, R. H. & Brown, F. (1986). Bacterially expressed antigenic peptide from foot-and-mouth disease virus capsid elicits variable immunologic responses in animals. Journal of Immunology 136, 1835–40.CrossRefGoogle ScholarPubMed