Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-24T16:41:43.911Z Has data issue: false hasContentIssue false

Prevalence and genetic diversity of blood parasite mixed infections in Spanish terrapins, Mauremys leprosa

Published online by Cambridge University Press:  23 June 2017

ALFONSO MARZAL*
Affiliation:
Departamento de Anatomía, Biología celular y Zoología, Universidad de Extremadura, 06071 Badajoz, Spain
ALEJANDRO IBÁÑEZ
Affiliation:
Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, 28006 Madrid, Spain
MANUEL GONZÁLEZ-BLÁZQUEZ
Affiliation:
Departamento de Anatomía, Biología celular y Zoología, Universidad de Extremadura, 06071 Badajoz, Spain
PILAR LÓPEZ
Affiliation:
Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, 28006 Madrid, Spain
JOSÉ MARTÍN
Affiliation:
Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, 28006 Madrid, Spain
*
*Corresponding author: Departamento de Anatomía, Biología celular y Zoología, Universidad de Extremadura, 06071 Badajoz, Spain. E-mail: [email protected]

Summary

Blood parasites such as haemogregarines and haemosporidians have been identified in almost all groups of vertebrates and may cause serious damages to their hosts. However, very little is known about biodiversity of these parasites and their effects on some groups of reptiles such as terrapins. Moreover, the information on virulence from blood parasites mixed infection is largely unknown in reptiles. With this aim, we investigated for the first time the prevalence and genetic diversity of blood parasites from one genus of haemoparasitic aplicomplexan (Hepatozoon) in two populations of Spanish terrapins (Mauremys leprosa), a semi-aquatic turtle from southwestern Europe with a vulnerable conservation status. We also examined the association between mixed blood parasite infection and indicators of health of terrapins (body condition, haematocrit values and immune response). Blood parasite infection with Hepatozoon spp was detected in 46·4% of 140 examined terrapins. The prevalence of blood parasites infection differed between populations. We found two different lineages of blood parasite, which have not been found in previous studies. Of the turtles with infection, 5·7% harboured mixed infection by the two lineages. There was no difference in body condition between uninfected, single-infected and mixed-infected turtles, but mixed-infected individuals had the lowest values of haematocrit, thus revealing the negative effects of blood parasite mixed infections. Immune response varied among terrapins with different infection status, where mixed infected individuals had higher immune response than uninfected or single-infected terrapins.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abbas, A. K., Lichtman, A. H. and Pillai, S. (2010). Cellular and Molecular Immunology. Saunders/Elsevier, Philadelphia.Google Scholar
Álvarez, D. (2010). Depredación de Mesotriton alpestris por Hirundo medicinalis en los Picos de Europa. Boletín de la Asociación Herpetológica Española 21, 2526.Google Scholar
Amo, L., López, P. and Martín, J. (2004). Prevalence and intensity of haemogregarinid blood parasites in a population of the Iberian rock lizard, Lacerta monticola . Parasitology Research 94, 290293.Google Scholar
Amo, L., Fargallo, J. A., Martínez-Padilla, J., Millán, J., López, P. and Martín, J. (2005). Prevalence and intensity of blood and intestinal parasites in a field population of a Mediterranean lizard, Lacerta lepida . Parasitology Research 96, 413417.Google Scholar
Arnold, E. N. and Ovenden, D. W. (2002). A Field Guide to the Reptiles and Amphibians of Britain and Europe. Harper Collins, London.Google Scholar
ASIH (2004). Guidelines for Use of Live Amphibians and Reptiles in Field and Laboratory Research. Herpetological Animal Care and Use Committee (HACC) of the American Society of Ichthyologists and Herpetologists, Lawrence, Kansas.Google Scholar
Baneth, G., Mathew, J. S., Shkap, V., Macintire, D. K., Barta, J. R. and Ewing, S. A. (2003). Canine hepatozoonosis: two disease syndromes caused by separate Hepatozoon spp. Trends in Parasitology 19, 2731.Google Scholar
Bensch, S., Stjerman, M., Hasselquist, D., Östman, Ö., Hansson, B., Westerdhal, H. and Torres-Pinheiro, R. (2000). Host specificity in avian blood parasites: a study of Plasmodium and Haemoproteus mitochondrial DNA amplified from birds. Proceedings of the Royal Society B: Biological Sciences 267, 15831589.Google Scholar
Bensch, S., Pérez-Tris, J., Waldenstrom, J. and Hellgreen, O. (2004). Linkage between nuclear and mitochondrial DNA sequences in avian malaria parasites: multiple cases of cryptic speciation? Evolution 58, 16171621.Google Scholar
Billet, M. A. (1904). A propos de l'Hémogrégarine de l’émyde lépreuse (Emys leprosa Schw.) de l'Afrique du Nord. Comptes Rendus Hebdomadaires des Séances et Mémoires de la Société de Biologie 56, 482484.Google Scholar
Bonnet, X. and Naulleau, G. (1994). Utilisation d'un indice de condition corporelle (BCI) pour l’étude de la reproduction chez les serpents. Comptes Rendus de l'Académie des Sciences – Série III (Sciences de la Vie) 317, 3441.Google Scholar
Cagle, F. R. (1939). A system of marking turtles for future identification. Copeia 3, 170173.Google Scholar
Caudell, J. N., Whitter, J. and Conover, M. R. (2002). The effects of haemogregarine-like parasites on brown tree snakes (Boiga irregularis) and slatey-grey snakes (Stegonotus cucullatus) in Queensland, Australia. International Biodeterioration and Biodegradation 49, 113119.Google Scholar
Choisy, M. and Roode, J. C. (2010). Mixed infections and the evolution of virulence: effects of resource competition, parasite plasticity, and impaired host immunity. American Naturalist 175, 105118.CrossRefGoogle ScholarPubMed
Da Silva, E. (2002). Mauremys leprosa. In Atlas y Libro Rojo de los Anfibios y Reptiles de España (ed. Pleguezuelos, J. M., Márquez, R. and Lizana, M.), pp. 143146. Asociación Herpetológica Española-Ministerio de Medio Ambiente, Madrid.Google Scholar
Davis, A. K. and Sterrett, S. C. (2011). Prevalence of haemogregarine parasites in three freshwater turtle species in a population in Northeast Georgia. International Journal of Zoological Research 7, 156163.Google Scholar
Davis, A. K., Benz, A. C., Ruyle, L. E., Kistler, W. M., Shock, B. C. and Yabsley, M. J. (2013). Searching before it is too late: a survey of blood parasites in Ctenosaura melanosterna, a critically endangered reptile of Honduras. ISRN Parasitology 2013, Article ID 495304, 16.Google Scholar
Ducloux, M. L. (1904). Sur une hémogrégarine de Emys leprosa . Comptes Rendus Hebdomadaires des Séances et Mémoires de la Société de Biologie 56, 564565.Google Scholar
Dunlap, K. D. and Mathies, T. (1993). The effects of nymphal ticks and their interaction with malaria on the physiology of male western fence lizards. Copeia 1993, 4145.Google Scholar
Dvořáková, N., Kvičerová, J., Papoušek, I., Javanbakht, H., Tiar, G., Kami, H. and Široký, P. (2014). Haemogregarines from western Palaearctic freshwater turtles (genera Emys, Mauremys) are conspecific with Haemogregarina stepanowi Danilewsky, 1885. Parasitology 141, 522530.Google Scholar
Dvořáková, N., Kvičerová, J., Hostovský, M. and Široký, P. (2015). Haemogregarines of freshwater turtles from Southeast Asia with a description of Haemogregarina sacaliae sp. n. and a redescription of Haemogregarina pellegrini Laveran and Pettit, 1910. Parasitology 142, 816826.Google Scholar
Fenwick, P. (1980). The effect of Plasmodium berghei, Trypanosoma lewisi, Coryrebacterium parvum, and Mycobacterium bovis (BCG) on the growth and survival of Hymenolepis diminuta in the rat. Parasitology 81, 175183.Google Scholar
Garrido, M. and Pérez-Mellado, V. (2013). Prevalence and intensity of blood parasites in insular lizards. Zoologischer Anzeiger – A Journal of Comparative Zoology 252, 588592.Google Scholar
Green, A. J. (2001). Mass/length residuals: measures of body condition or generators of spurious results? Ecology 85, 14731483.Google Scholar
Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95⁄98⁄NT. Nucleic Acids Symposium Series 41, 9598.Google Scholar
Harris, D. J., Maia, J. P. and Perera, A. (2011). Molecular characterization of Hepatozoon species in reptiles from the Seychelles. Journal of Parasitology 97, 106110.Google Scholar
Hellgren, O., Waldenström, J. and Bensch, S. (2004). A new PCR assay for simultaneous studies of Leucocytozoon, Plasmodium, and Haemoproteus from avian blood. Journal of Parasitology 90, 797802.Google Scholar
Hook, E. B. and Regal, R. R. (1995). Capture-recapture methods in epidemiology: methods and limitations. Epidemiology Review 17, 243264.Google Scholar
Jacobson, E. (2007). lnfectious Diseases and Pathology of Reptiles. CRC Press, Florida.Google Scholar
Janovy, J., Clopton, R. E., Clopton, D. A., Snyder, S. D., Efting, A. and Krebs, L. (1995). Species density distributions as null models for ecologically significant interactions of parasite species in an assemblage. Ecological Modelling 77, 189196.Google Scholar
Javanbakht, H. and Sharifi, M. (2014). Prevalence and intensity of Haemogregarina stepanowi (Apicomplexa: Haemogregarinidae) in two species of freshwater turtles (Mauremys caspica and Emys orbicularis) in Iran. Journal of Entomology and Zoology Studies 2, 155158.Google Scholar
Javanbakht, H., Kvičerová, J., Dvořáková, N., Mikulíček, P., Sharifi, M., Kautman, M., Maršíková, A. and Široký, P. (2015). Phylogeny, diversity, distribution, and host specificity of Haemoproteus spp. (Apicomplexa: Haemosporida: Haemoproteidae) of Palaearctic Tortoises. Journal of Eukaryotic Microbiology 62, 670678.Google Scholar
Juhl, J. and Permin, A. (2002). The effect of Plasmodium gallinaceum on a challenge infection with Ascaridia galli in chickens. Veterinary Parasitology 105, 1119.Google Scholar
Karbowiak, G., Rychlik, L., Nowakowski, W. and Wita, I. (2005). Natural infections of small mammals with blood parasites on the borderland of boreal and temperate forest zones. Acta Theriologica 50, 3142.Google Scholar
Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Mentjies, P. and Drummond, A. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 16471649.Google Scholar
Kuchling, G. (2003). A new underwater trap for catching turtles. Herpetological Review 34, 126128.Google Scholar
Kumar, S., Stecher, G. and Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33, 18701874.Google Scholar
Lachish, S., Gopalaswamy, A. M., Knowles, S. C. L. and Sheldon, B. C. (2012). Site-occupancy modelling as a novel framework for assessing test sensitivity and estimating wildlife disease prevalence from imperfect diagnostic tests. Methods in Ecology and Evolution 3, 339348.Google Scholar
Lagrue, C., McEwan, J., Poulin, R. and Keeney, D. B. (2007). Co-occurrences of parasite clones and altered host phenotype in a snail-trematode system. International Journal of Parasitology 37, 14591467.Google Scholar
Laveran, A. and Pettit, A. (1909). Contribution à l’étude des hémogrégarines de Clemmys leprosa et de Chelodina longicollis . Bulletin de la Société de Pathologie Exotique 2, 377380.Google Scholar
Mader, D. R. (2006). Reptile Medicine and Surgery. Saunders Elsevier, St Louis, Missouri.Google Scholar
Maia, J. P., Harris, D. J., Carranza, S. (2016). Reconstruction of the evolutionary history of Haemosporida (Apicomplexa) based on the cyt b gene with characterization of Haemocystidium in geckos (Squamata: Gekkota) from Oman. Parasitology International 65, 511.Google Scholar
Marchetti, V., Lubas, G., Baneth, G., Modenato, M. and Mancianti, F. (2009). Hepatozoonosis in a dog with skeletal involvement and meningoencephalomyelitis. Veterinary Clinical Pathology 38, 121125.Google Scholar
Martin, L. B., Han, P., Lewittes, J., Kuhlman, J. R., Klasing, K. C. and Wikelski, M. (2006) Phytohemagglutinin-induced skin swelling in birds: histological support for a classic immunoecological technique. Functional Ecology 20, 290299.Google Scholar
Marvin, G. A. and Lutterschmidt, W. I. (1997). Locomotor performance in juvenile and adult box turtles (Terrapene carolina): a reanalysis for effects of body size and extrinsic loading using a terrestrial species. Journal of Herpetology 31, 582586.Google Scholar
Marzal, A., Bensch, S., Reviriego, M., Balbontin, J. and De Lope, F. (2008). Effects of malaria double infection in birds: one plus one is not two. Journal of Evolutionary Biology 21, 979987.Google Scholar
Marzal, A., Asghar, M., Rodríguez, L., Reviriego, M., Hermosell, I. G., Balbontín, J., Garcia-Longoria, L., De Lope, F. and Bensch, S. (2013). Co-infections by malaria parasites decrease feather growth but not feather quality in house martin. Journal of Avian Biology 44, 437444.Google Scholar
Mehlotra, R. K., Lorry, K., Kastens, W., Miller, S. M., Alpers, M. P., Bockarie, M., Kazura, J. W. and Zimmerman, P. A. (2000). Random distribution of mixed species malaria infections in Papua New Guinea. The American Journal of Tropical Medicine and Hygiene 62, 225231.Google Scholar
Merilä, J., Björklund, M. and Bennett, G. F. (1995). Geographic and individual variation in haematozoan infections in the greenfinch, Carduelis chloris . Canadian Journal of Zoology 73, 17981804.Google Scholar
Merino, S., Moreno, J., Vásquez, R. A., Martínez, J., Sánchez-Monsálvez, I., Estades, C. F., Ippi, S., Sabat, P., Rozzi, R. and Mcgehee, S. (2008). Haematozoa in forest birds from southern Chile: latitudinal gradients in prevalence and parasite lineage richness. Austral Ecology 33, 329340.Google Scholar
Mosquera, J. and Adler, F. R. (1998). Evolution of virulence: a unified framework for coinfection and superinfection. Journal of Theoretical Biology 195, 293313.Google Scholar
Orkun, Ö. and Güven, E. (2013). A new species of Haemoproteus from a tortoise (Testudo graeca) in Turkey, with remarks on molecular phylogenetic and morphological analysis. Journal of Parasitology 99, 112117.Google Scholar
Paperna, I. (1989). Developmental cycle of chelonian haemogregarines in leeches with extra-intestinal multiple sporozoite oocysts and a note on the blood stages in the chelonian hosts. Diseases of Aquatic Organisms 7, 149153.Google Scholar
Peig, J. and Green, A. J. (2010). The paradigm of body condition: a critical reappraisal of current methods based on mass and length. Functional Ecology 24, 13231332.Google Scholar
Perkins, S. L. and Keller, A. K. (2001). Phylogeny of nuclear small subunit rRNA genes of hemogregarines amplified with specific oligonucleotides. Journal of Parasitology 87, 870876.Google Scholar
Pineda-Catalan, O., Perkins, S. L., Pierce, M. A., Engstrand, R., Garcia-Davila, C., Pinedo-Vasquez, M. and Aguirre, A. A. (2013). Revision of hemoproteid genera and description and redescription of two species of chelonian hemoproteid parasites. Journal of Parasitology 99, 10891098.CrossRefGoogle ScholarPubMed
Pollitt, L. C., Bram, J. T., Blanford, S., Jones, M. J. and Read, A. F. (2015). Existing infection facilitates establishment and density of malaria parasites in their mosquito vector. PLoS Pathogens 11, e1005003.Google Scholar
Polo-Cavia, N., Engstrom, T., López, P. and Martín, J. (2010). Body condition does not predict immunocompetence of western pond turtles in altered versus natural habitats. Animal Conservation 13, 256264.Google Scholar
Ramiro, R. S., Pollitt, L. C., Mideo, N. and Reece, S. E. (2016). Facilitation through altered resource availability in a mixed-species rodent malaria infection. Ecology Letters 19, 10411050.Google Scholar
Read, A. F. and Taylor, L. H. (2001). The ecology of genetically diverse infections. Science 292, 10991102.Google Scholar
Ricklefs, R. E., Swanson, B., Fallon, S. M., Martinez, A., Scheuerlein, A., Gray, J. and Latta, S. L. (2005). Community relationships of avian malaria parasites in southern Missouri. Ecological Monographs 75, 543559.Google Scholar
Romero, D., Duarte, J., Narváez-Ledesma, L., Farfán, M. A. and Real, R. (2014). Presence of the leech Placobdella costata in the south of the Iberian Peninsula. Acta Parasitologica 59, 259262.Google Scholar
Sambrook, J., Fritch, F. J. and Maniatis, T. (2002). Molecular Cloning, A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York.Google Scholar
Schall, J. J. (1990). Virulence of lizard malaria: the evolutionary ecology of an ancient parasite-host association. Parasitology 100, 3552.Google Scholar
Schall, J. J. (2002) Parasite virulence. In The Behavioural Ecology of Parasites (ed. Lewis, E. E., Cambell, J. F. and Sukhdeo, M. V. K.), pp. 283313. CABI Publishing, Oxon.Google Scholar
Schmid-Hempel, P. (2011). Evolutionary Parasitology: the Integrated Study of Infections, Immunology, Ecology, and Genetics. Oxford University Press, Oxford.Google Scholar
Sehgal, R. N. M., Buermann, W., Harrigan, R. J., Bonneaud, C., Loiseau, C., Chasar, A., Sepil, I., Valkiūunas, G., Iezhova, T., Saatchi, S. and Smith, T. B. (2011). Spatially explicit predictions of blood parasites in a widely distributed African rainforest bird. Proceedings of the Royal Society B: Biological Sciences 278, 10251033.Google Scholar
Siddall, M. E. and Desser, S. S. (1992). Prevalence and intensity of Haemogregarina balli (Apicomplexa: Adeleina: Haemogregarinidae) in three turtle species from Ontario, with observation on intraerythrocytic development. Canadian Journal of Zoology 70, 123128.Google Scholar
Smits, J. E., Bortolotti, G. R. and Tella, J. L. (1999). Simplifying the phytohaemagglutinin skin-testing technique in studies of avian immunocompetence. Functional Ecology 13, 567572.Google Scholar
Sol, D., Jovani, R. and Torres, J. (2000). Geographical variation in blood parasites in feral pigeons: the role of vectors. Ecography 23, 307314.Google Scholar
Soler, G., Cortelezzi, A., Berkunsky, I., Kacoliris, F. P. and Gullo, B. (2014). Primer registro de depredación de huevos de anuros por sanguijuelas en Argentina. Cuadernos de Herpetología 28, 3941.Google Scholar
Taylor, L. H., Mackinnon, M. J. and Read, A. (1998). Virulence of mixed-clone and single-clone infections of the rodent malaria Plasmodium chabaudi . Evolution 52, 583591.Google Scholar
Telford, S. R. (1988). Studies on African saurian malarias: five Plasmodium species from the Uzungwe Mountains of Tanzania. International Journal of Parasitology 18, 197219.Google Scholar
Telford, S. R. (2009). Hemoparasites of the Reptilia: Color Atlas and Text. CRC Press, Boca Raton, Florida, USA.Google Scholar
Tella, J. L., Scheuerleim, A. and Ricklefs, R. E. (2002). Is cell mediated immunity related to the evolution of life-history strategies in birds? Proceedings of the Royal Society B: Biological Sciences 269, 10591066.Google Scholar
Ujvari, B. and Madsen, T. (2006). Age, parasites, and condition affect humoral immune response in tropical pythons. Behavioral Ecology 17, 2024.Google Scholar
Ujvari, B., Madsen, T. and Olsson, M. (2004). High prevalence of Hepatozoon spp. (Apicomplexa, Hepatozoidae) infection in water pythons (Liasis fuscus) from tropical Australia. Journal of Parasitology 90, 670672.Google Scholar
Valkiūnas, G., Zickus, T., Shapoval, A. P. and Lezhova, T. A. (2006). Effect of Haemoproteus belopolskyi (Haemosporida: Haemoproteidae) on body mass of the blackcap Sylvia atricapilla . Journal of Parasitology 92, 11231125.Google Scholar
van Dijk, P. P., Mateo Miras, J. A., Cheylan, M., Joger, U., Sá-Sousa, P. and Pérez-Mellado, V. (2004). Mauremys leprosa. In The IUCN Red List of Threatened Species. Version 201.2. http//www.iucenredlist.org Google Scholar
Vardo-Zalik, A. M. and Schall, J. J. (2007). Clonal diversity of a lizard malaria parasite, Plasmodium mexicanum, in its vertebrate host, the western fence lizard: role of variation in transmission intensity over time and space. Molecular Ecology 16, 27122720.Google Scholar
Vardo-Zalik, A. M. and Schall, J. J. (2008). Clonal diversity within infections and the virulence of a malaria parasite, Plasmodium mexicanum . Parasitology 135, 13631372.Google Scholar
Waye, H. L. and Mason, R. T. (2008). A combination of body condition measurements is more informative than conventional condition indices: temporal variation in body condition and corticosterone in brown tree snakes (Boiga irregularis). General and Comparative Endocrinology 155, 607612.Google Scholar
Wozniak, E. J., Kazacos, K. R., Telford, S. R. and Mclaughlin, G. (1996). Characterization of the clinical and anatomical pathological changes associated with Hepatozoon mocassini infections in unnatural reptilian hosts. International Journal of Parasitology 26, 141146.Google Scholar
Zehtindjiev, P., Ilieva, M., Westerdahl, H., Hanssonb, B., Valkiuñas, G. and Bensch, S. (2008). Dynamics of parasitemia of malaria parasites in a naturally and experimentally infected migratory songbird, the great reed warbler Acrocephalus arundinaceus . Experimental Parasitology 119, 99110.Google Scholar
Supplementary material: File

Marzal supplementary material

Marzal supplementary material

Download Marzal supplementary material(File)
File 62.6 KB