Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-20T00:51:55.616Z Has data issue: false hasContentIssue false

The possible role of Rickettsia-like organisms in trypanosomiasis epidemiology

Published online by Cambridge University Press:  06 April 2009

R. D. Baker
Affiliation:
Centre for Operational Research and Applied Statistics, University of Salford, Salford M5 4WT
I. Maudlin
Affiliation:
Tsetse Research Laboratory, University of Bristol, Langford, Bristol BSI8 7DU
P. J. M. Milligan
Affiliation:
Department of Biological Sciences, University of Salford, Salford M5 4WT
D. H. Molyneux
Affiliation:
Department of Biological Sciences, University of Salford, Salford M5 4WT
S. C. Welburn
Affiliation:
Tsetse Research Laboratory, University of Bristol, Langford, Bristol BSI8 7DU

Summary

A simple model of human and animal trypanosomiasis is proposed in which the Ross equation for disease transmission is supplemented by a differential equation describing the inheritance of susceptibility in the vector. The model predicts an equilibrium state of balanced polymorphism for the fraction, θ, of susceptible tsetse and the occurrence of periodic epidemics at roughly the observed intervals. A loss of infectivity to tsetse of mechanically transmitted strains of trypano some would seem to be a good evolutionary strategy for the trypanosome. The main implication for disease control is that measures initially reducing trypanosomiasis incidence could trigger off subsequent epidemics. Since θ leads incidence, monitoring θ could give several years advance warning of major epidemics.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, R. M. & May, R. M. (1981). Population dynamics of directly transmitted microparasites of invertebrates. Philosophical Transactions of the Royal Society, B 291, 451524.Google Scholar
Apted, F. I. C. (1970). The epidemiology of Rhodesian sleeping sickness. In The African Trypanosomiases (ed. Mulligan, H. W. & Potts, W. H.), pp. 645660. London: Allen & Unwin/MOD.Google Scholar
Ashcroft, M. T. (1960). A comparison between a syringe-passaged and tsetse-fly-transmitted line of a strain of Trypanosoma rhodesiense. Annals of Tropical Medicine and Parasitology 54, 4453.CrossRefGoogle ScholarPubMed
Bursell, E. (1981). Digestion in haematophageous arthropods. Parasitology 82, 107–10.Google Scholar
Duggan, A. J. (1962). A survey of sleeping sickness in Northern Nigeria from the earliest times to the present day. Transactions of the Royal Society for Tropical Medicine and Hygiene 56, 439–80.CrossRefGoogle Scholar
Fine, P. E. M. (1975). Vectors and vertical transmission–epidemiologic perspective. Annals of the New York Academy of Sciences 266, 173–94.CrossRefGoogle ScholarPubMed
Ford, J. (1971). The Role of the Trypanosomiases in African Ecology. Oxford: Clarendon Press.Google Scholar
Golder, T. & Patel, N. (1980). Some effects of trypanosome development on the saliva and salivary glands of the tsetse fly, Glossina morsitans. European Journal of Cell Biology 22, 511.Google Scholar
Golder, T. K., Otieno, L. H., Patel, N. Y. & Onyango, P. (1982). Increased sensitivity to endosulfan of trypanosoma-infected Glossina morsitans. Annals of Tropical Medicine and Parasitology 76, 483–4.CrossRefGoogle ScholarPubMed
Golder, T. K., Otieno, L. H., Patel, N. Y. & Onyango, P. (1984). Increased sensitivity to a natural pyrethrum extract of trypanosoma-infected Glossina morsitans. Acta Tropica 41, 77–9.Google ScholarPubMed
Hecker, H. & Moloo, S. K. (1980). Influence of Trypanosoma (trypanozoon) brucei infection on the fine-structure of midgut cells of Glossina morsitans morsitans. Parasitology 82, 106–7.Google Scholar
Kendall, M. G. & Stuart, A. (1977). The Advanced Theory of Statistics, vol. 3, 4th Edn.London: Griffin.Google Scholar
Kilama, W. L. & Craig, G. A. (1969). Monofactorial inheritance of susceptibility to Plasmodium gallinaceum in Aedes aegypti. Annals of Tropical Medicine and Parasitology 63, 419–32.CrossRefGoogle ScholarPubMed
Kilama, W. L., Mtera, K. N. M. & Paul, R. K. (1981). Epidemiology of human trypanosomiasis in Tanzania. The 17th Meeting of ISCTRC, OAU/STRC, Nairobi, pp. 187–93.Google Scholar
McGreevy, P. B., McClelland, G. A. H. & Lavoipierre, M. M. (1974). Inheritance of susceptibility to Dirofolia immitis infection in Aedes egypti. Annals of Tropical Medicine and Parasitology 68, 97109.CrossRefGoogle Scholar
Maudlin, I. & Dukes, P. (1985). Extrachromosomal inheritance of susceptibility to trypanosome infection in tsetse flies. I. Selection of susceptible and refractory lines of Glossina morsitans morsitans. Annals of Tropical Medicine and Parasitology 79, 317–24.CrossRefGoogle ScholarPubMed
Maudlin, I., Dukes, P., Luckins, A. G. & Hudson, K. M. (1986). Extrachromosomal inheritance of susceptibility to trypanosome infection in tsetse flies. II. Susceptibility of selected lines of Glossina morsitans morsitans to different stocks and species of trypanosomes. Annals of Tropical Medicine and Parasitology 80, 97105.CrossRefGoogle Scholar
Maudlin, I. & Ellis, D. S. (1985). Association between intracellular rickettsial-like infections of midgut cells and susceptibility to Trypanosome infection in Glossina spp. Zeitschrift für Parasitenkunde 71, 683–7.CrossRefGoogle ScholarPubMed
Maudlin, I., Welburn, . C., Gibson, W. C. & Mehlitz, D. (1987). The distribution of rickettsia-like organisms and trypanosome infections in different tsetse populations. In Liberia Annual Report 1987, Liberia Research Unit of the Tropical Institute, Hamburg, pp. 7475.Google Scholar
Milligan, P. J. M. & Baker, R. D. (1988). A model of tsetse-transmitted animal trypanosomiasis. Parasitology 96, 211–39.CrossRefGoogle Scholar
Moloo, S. K. & Shaw, M. K. (1989). Rickettsial infections of midgut cells are not associated with susceptibility of Glossina morsitans centralis to Trypanosoma congolense infection. Acta Tropica 46, 223–7.CrossRefGoogle Scholar
Molyneux, D. H., Lavin, D. R. & Elce, B. (1979). A possible relationship between Salivarian trypanosomes and Glossina labrum mechano-receptors. Annals of Tropical Medicine and Parsitology 73, 287–90.CrossRefGoogle ScholarPubMed
Morris, K. R. S. (1960 a). Studies on the epidemiology of sleeping sickness in East Africa. III. The endemic area of Lakes Edward and George in Uganda. Transactions of the Royal Society for Tropical Medicine and Hygiene 54, 212–24.CrossRefGoogle Scholar
Morris, K. R. S. (1960 b). Studies on the epidemiology of sleeping sickness in East Africa. II. Sleeping sickness in Kenya. Transactions of the Royal Society for Tropical Medicine and Hygiene 54, 7186.CrossRefGoogle ScholarPubMed
Morris, K. R. S. (1962). The epidemiology of sleeping sickness in East Africa. V. Epidemics on the Albert Nile. Transactions of the Royal Society for Tropical Medicine and Hygiene 56, 316–38.CrossRefGoogle Scholar
Newland, D. E. (1984). An Introduction to Random Vibrations and Spectral Analysis, 2nd Edn.London: Longman.Google Scholar
Nitcheman, S. (1988). Comparison des longévités des glossines (Glossina morsitans morsitans Westwood, 1850) infectées par les trypanosomes (Trypanosoma nannomonas congolense Broden 1904) et des glossines saines. Annales de parasitologie humaine et comparde 63, 163–4.CrossRefGoogle Scholar
Rodriguez, P. H. & Craig, G. B. (1973). Susceptibility to Brugia pahangi in geographic strains of Aedes egypti. American Journal of Tropical Medicine and Hygiene 22, 5361.CrossRefGoogle Scholar
Ryan, L. (1984). The effect of trypanosome infection on a natural population of Glossina longipalpis Wiedemann (Diptera: Glossinidae) in Ivory Coast. Acta Tropica 41, 355–9.Google ScholarPubMed
Scott, D. (1970). The epidemiology of Gambian sleeping sickness. In The African Trypanosomiases, (ed. Mulligan, H. W. & Potts, W. H.) Allen & London: Unwin/MOD.Google Scholar
Trpis, M., Duhrkopf, R. E. & Parker, K. L. (1981). Non-Mendelian inheritance of mosquito susceptibility to infection with Brugia malayia and Brugia pahangi. Science 211, 1435–7.CrossRefGoogle Scholar
Welburn, S. C. & Gibson, W. C. (1989). Cloning of a repetitive DNA from the rickettsia-like organsims of tsetse flies (Glossina spp.). Parasitology 98, 81–4.CrossRefGoogle Scholar