Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-22T05:33:01.728Z Has data issue: false hasContentIssue false

Phylogenetic structure of host spectra in Palaearctic fleas: stability versus spatial variation in widespread, generalist species

Published online by Cambridge University Press:  04 September 2013

BORIS R. KRASNOV*
Affiliation:
Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, 84990 Midreshet Ben-Gurion, Israel
SHAI PILOSOF
Affiliation:
Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, 84990 Midreshet Ben-Gurion, Israel
GEORGY I. SHENBROT
Affiliation:
Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, 84990 Midreshet Ben-Gurion, Israel
IRINA S. KHOKHLOVA
Affiliation:
Wyler Department of Dryland Agriculture, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, 84990 Midreshet Ben-Gurion, Israel
A. ALLAN DEGEN
Affiliation:
Wyler Department of Dryland Agriculture, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, 84990 Midreshet Ben-Gurion, Israel
*
* Corresponding author: Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, 84990 Midreshet Ben-Gurion, Israel. E-mail: [email protected]

Summary

We investigated spatial variation in the phylogenetic structure of host spectra in fleas parasitic on small mammals. Measures of phylogenetic host specificity ((phylogenetic species clustering (PSC) and phylogenetic species variability (PSV)) varied significantly more between than within flea species, but the proportion of variation which accounted for among-species differences was low. In 13 of 18 common flea species, at least one of the indices of the phylogenetic structure of regional host spectra revealed a significantly positive association with the phylogenetic structure of regional host assemblage, while relationships between PSC or PSV of the regional host spectrum and the distance from either the region of a flea's maximal abundance or latitude were not supported. Overall, results of this study demonstrated that although the degree of phylogenetic host specificity in fleas can be considered as a true attribute of a flea species, it is highly spatially variable, with phylogenetic structure of the surrounding host pool being the main reason behind this variation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Antonovics, J., Boots, M., Ebert, D., Koskella, B., Poss, M. and Sadd, B. M. (2013). The origin of specificity by means of natural selection: evolved and nonhost resistance in host–pathogen interactions. Evolution 67, 19.Google Scholar
Arneberg, P., Skorping, A. and Read, A. F. (1997). Is population density a species character? Comparative analyses of the nematode parasites of mammals. Oikos 80, 289300.Google Scholar
Bininda-Emonds, O. R. P., Cardillo, M., Jones, K. E., MacPhee, R. D. E., Beck, R. M. D., Grenyer, R., Price, S. A., Vos, R. A., Gittleman, J. L. and Purvis, A. (2007). The delayed rise of present-day mammals. Nature 446, 507512.CrossRefGoogle ScholarPubMed
Brooks, D. R., León-Règagnon, V., McLennan, D. A. and Zelmer, D. (2006). Ecological fitting as a determinant of the community structure of platyhelminth parasites of anurans. Ecology 87, S76S85.CrossRefGoogle ScholarPubMed
Brown, J. H. (1984). On the relationship between abundance and distribution of species. American Naturalist 124, 255279.Google Scholar
Cooper, N., Griffin, R., Franz, M., Omotayo, M. and Nunn, C. L. (2012). Phylogenetic host specificity and understanding parasite sharing in primates. Ecology Letters 15, 13701377.Google Scholar
Fox, L. R. and Morrow, P. A. (1981). Specialization: species property or local phenomenon? Science 211, 887893.Google Scholar
Futuyma, D. J. and Moreno, G. (1988). The evolution of ecological specialization. Annual Review of Ecology and Systematics 19, 207233.Google Scholar
Gaston, K. J. (2003). The Structure and Dynamics of Geographic Ranges. Oxford University Press, Oxford, UK.Google Scholar
Helmus, M. R., Bland, T. J., Williams, C. K. and Ives, A. R. (2007). Phylogenetic measures of biodiversity. American Naturalist 169, E68E83.CrossRefGoogle ScholarPubMed
Hughes, J. B. (2000). The scale of resource specialization and the distribution and abundance of lycaenid butterflies. Oecologia 123, 375383.CrossRefGoogle ScholarPubMed
Janzen, D. H. (1985). On ecological fitting. Oikos 45, 308310.CrossRefGoogle Scholar
Kembel, S. W., Cowan, P. D., Helmus, M. R., Cornwell, W. K., Morlon, H., Ackerly, D. D., Blomberg, S. P. and Webb, C. O. (2010). Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 14631464.Google Scholar
Khokhlova, I. S., Fielden, L. J., Degen, A. A. and Krasnov, B. R. (2012). Ectoparasite fitness in auxiliary hosts: phylogenetic distance from a principal host matters. Journal of Evolutionary Biology 25, 20052013.CrossRefGoogle ScholarPubMed
Korallo-Vinarskaya, N. P., Krasnov, B. R., Vinarski, M. V., Shenbrot, G. I., Mouillot, D. and Poulin, R. (2009). Stability in abundance and niche breadth of gamasid mites across environmental conditions, parasite identity and host pools. Evolutionary Ecology 23, 329345.CrossRefGoogle Scholar
Krasnov, B. R. (2008). Functional and Evolutionary Ecology of Fleas: A Model for Ecological Parasitology. Cambridge University Press, Cambridge, UK.Google Scholar
Krasnov, B. R. and Poulin, R. (2010). Ecological properties of a parasite: species-specific stability and geographical variation. In The Biogeography of Host–Parasite Interactions (ed. Morand, S. and Krasnov, B. R.), pp. 99114. Oxford University Press, Oxford, UK.Google Scholar
Krasnov, B. R., Khokhlova, I. S., Oguzoglu, I. and Burdelova, N. V. (2002 a). Host discrimination by two desert fleas using an odour cue. Animal Behaviour 64, 3340.Google Scholar
Krasnov, B. R., Burdelova, N. V., Shenbrot, G. I. and Khokhlova, I. S. (2002 b). Annual cycles of four flea species (Siphonaptera) in the central Negev desert. Medical and Veterinary Entomology 16, 266276.Google Scholar
Krasnov, B. R., Mouillot, D., Shenbrot, G. I., Khokhlova, I. S. and Poulin, R. (2004 a). Geographical variation in host specificity of fleas (Siphonaptera): the influence of phylogeny and local environmental conditions. Ecography 27, 787797.Google Scholar
Krasnov, B. R., Shenbrot, G. I., Khokhlova, I. S. and Poulin, R. (2004 b). Relationships between parasite abundance and the taxonomic distance among a parasite's host species: an example with fleas parasitic on small mammals. International Journal for Parasitology 34, 12891297.Google Scholar
Krasnov, B. R., Shenbrot, G. I., Khokhlova, I. S. and Poulin, R. (2006). Is abundance a species attribute of haematophagous ectoparasites? Oecologia 150, 132140.Google Scholar
Krasnov, B. R., Korine, C., Burdelova, N. V., Khokhlova, I. S. and Pinshow, B. (2007). Between-host phylogenetic distance and feeding efficiency in haematophagous ectoparasites: rodent fleas and a bat host. Parasitology Research 101, 365371.Google Scholar
Krasnov, B. R., Shenbrot, G. I., Khokhlova, I. S., Vinarski, M. V., Korallo-Vinarskaya, N. P. and Poulin, R. (2008). Geographical patterns of abundance: testing expectations of the “abundance optimum” model in two taxa of ectoparasitic arthropods. Journal of Biogeography 35, 21872194.Google Scholar
Krasnov, B. R., Mouillot, D., Shenbrot, G. I., Khokhlova, I. S., Vinarski, M. V., Korallo-Vinarskaya, N. P. and Poulin, R. (2010). Similarity in ectoparasite faunas of Palaearctic rodents as a function of host phylogenetic, geographic, or environmental distances: which matters the most? International Journal for Parasitology 40, 807817.Google Scholar
Krasnov, B. R., Stanko, M., Khokhlova, I. S., Shenbrot, G. I., Morand, S., Korallo-Vinarskaya, N. P. and Vinarski, M. V. (2011). Nestedness and beta-diversity in ectoparasite assemblages of small mammalian hosts: effects of parasite affinity, host biology and scale. Oikos 120, 630639.CrossRefGoogle Scholar
Morlon, H., Schwilk, D. W., Bryant, J. A., Marquet, P. A., Rebelo, A. G., Tauss, C., Bohannan, B. J. M. and Green, J. L. (2011). Spatial patterns of phylogenetic diversity. Ecology Letters 14, 141149.Google Scholar
Poulin, R. (2005). Relative infection levels and taxonomic distances among the host species used by a parasite: insights into parasite specialization. Parasitology 130, 109115.Google Scholar
Poulin, R. (2007). Evolutionary Ecology of Parasites, 2nd Edn. Princeton University Press, Princeton, NJ, USA.CrossRefGoogle Scholar
Poulin, R. and Dick, T. A. (2007). Spatial variation in population density across the geographical range in helminth parasites of yellow perch Perca flavescens . Ecography 30, 629636.CrossRefGoogle Scholar
Poulin, R. and Mouillot, D. (2003). Parasite specialization from a phylogenetic perspective: a new index of host specificity. Parasitology 126, 473480.Google Scholar
Poulin, R., Krasnov, B. R. and Morand, S. (2006). Patterns of host specificity in parasites exploiting small mammals. In Micromammals and Macroparasites: From Evolutionary Ecology to Management (ed. Morand, S., Krasnov, B. R. and Poulin, R.), pp. 233256. SpringerVerlag, Tokyo, Japan.Google Scholar
Poulin, R., Krasnov, B. R. and Mouillot, D. (2011). Host specificity in phylogenetic and geographic space. Trends in Parasitology 27, 355361.Google Scholar
R Development Core Team (2011). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org.Google Scholar
Ruggiero, A. and Hawkins, B. A. (2006). Mapping macroecology. Global Ecology and Biogeography 15, 433437.Google Scholar
Seifertová, M., Vyskočilová, M., Morand, S. and Šimková, A. (2008). Metazoan parasites of freshwater cyprinid fish (Leuciscus cephalus): testing biogeographical hypotheses of species diversity. Parasitology 135, 14171435.Google Scholar
Shenbrot, G. I., Krasnov, B. R. and Lu, L. (2007). Geographic range size and host specificity in ectoparasites: a case study with Amphipsylla fleas and rodent hosts. Journal of Biogeography 34, 16791690.Google Scholar
Sokal, R. R. and Rohlf, F. J. (1995). Biometry, 3rd Edn. W. H. Freeman, NY, USA.Google Scholar
Tabor, S. P., Williams, D. F., Germano, D. J. and Thomas, R. E. (1993). Fleas (Siphonaptera) infesting giant kangaroo rats (Dipodomys ingens) on the Elkhorn and Carrizo plains, San Luis Obispo County, California. Journal of Medical Entomology 30, 291294.CrossRefGoogle Scholar
Vázquez, D. and Stevens, R. D. (2004). The latitudinal gradient in niche breadth: concepts and evidence. American Naturalist 164, E1E19.Google Scholar
Villalobos, F., Rangel, T. F. and Diniz-Filho, J. A. F. (2013). Phylogenetic fields of species: cross-species patterns of phylogenetic structure and geographical coexistence. Proceedings of the Royal Society of London B 280, 20122570.Google Scholar
Webb, C. O., Ackerly, D. D., McPeek, M. A. and Donoghue, M. J. (2002). Phylogenies and community ecology. Annual Review of Ecology, Evolution and Systematics 33, 475505.Google Scholar