Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T17:05:21.845Z Has data issue: false hasContentIssue false

Phylogenetic analysis of freshwater fish trypanosomes from Europe using ssu rRNA gene sequences and random amplification of polymorphic DNA

Published online by Cambridge University Press:  14 December 2004

W. C. GIBSON
Affiliation:
School of Biological Sciences, University of Bristol, Bristol BS8 1UG, UK
J. LOM
Affiliation:
Institute of Parasitology, Academy of Sciences of the Czech Republic, Branišovská 31, 37005 České Budějovice, Czech Republic
H. PECKOVÁ
Affiliation:
Institute of Parasitology, Academy of Sciences of the Czech Republic, Branišovská 31, 37005 České Budějovice, Czech Republic
V. R. FERRIS
Affiliation:
School of Biological Sciences, University of Bristol, Bristol BS8 1UG, UK
P. B. HAMILTON
Affiliation:
School of Biological Sciences, University of Bristol, Bristol BS8 1UG, UK

Abstract

The taxonomy and phylogenetic relationships of fish trypanosomes are uncertain. A collection of 22 cloned trypanosome isolates from 14 species of European freshwater fish and 1 species of African freshwater fish were examined by molecular phylogenetic analysis. The small subunit ribosomal RNA (ssu rRNA) genes of 8 clones were sequenced and compared with ssu rRNA gene sequences from a wider selection of vertebrate trypanosome isolates by phylogenetic analysis. All trypanosomes from freshwater fish fell in a single clade, subdivided into 3 groups. This clade sits within a larger, robust clade containing trypanosomes from marine fish and various amphibious vertebrates. All 22 trypanosome clones were analysed by random amplification of polymorphic DNA. The resulting dendrogram shows 3 groups, which are congruent with the groups identified in the ssu rRNA gene phylogeny. Two of the groups contain the majority of trypanosome isolates and within-group variation is slight. These groups do not separate purported trypanosome species distinguished by morphology or host origin, and thus these criteria do not appear to be reliable guides to genetic relationships among fish trypanosomes. However, we suggest that the 2 groups themselves may represent different species of fish trypanosomes. The polymorphic DNA markers we have identified will facilitate future comparisons of the biology of these 2 groups of fish trypanosomes.

Type
Research Article
Copyright
2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

BAKER, J. R., LISTON, A. J. & SELDEN, L. F. ( 1976). Trypomastigote dimorphism and satellite deoxyribonucleic acid in a clone of Trypanosoma (Schizotrypanum) dionissii. Journal of General Microbiology 97, 113115.CrossRefGoogle Scholar
BREINDL, V. ( 1915). Study on the blood parasites of freshwater fishes. (In Czech.) Rozpravy ceské Akademie Císare Františka Josefa pro vedy, slovesnost a umení 18, 129.Google Scholar
FIGUEROA, F., MAYER, W. E., LOM, J., DYKOVA, I., WELLER, M., PECKOVA, H. & KLEIN, J. ( 1999). Fish trypanosomes: Their position in kinetoplastid phylogeny and variability as determined from 12S rRNA kinetoplast sequences. Journal of Eukaryotic Microbiology 46, 473481.CrossRefGoogle Scholar
JAKES, K. A., O'DONOGHUE, P. J. & ADLARD, R. D. ( 2001). Phylogenetic relationships of Trypanosoma chelodina and Trypanosoma binneyi from Australian tortoises and platypuses inferred from small subunit rRNA analyses. Parasitology 123, 483487.CrossRefGoogle Scholar
JIRKU, M., KOLESNIKOV, A. A., BENADA, O. & LUKES, J. ( 1995). Marine fish and ray trypanosomes have large kinetoplast minicircle DNA. Molecular and Biochemical Parasitology 73, 279283.CrossRefGoogle Scholar
KANMOGNE, G. D., STEVENS, J. R., ASONGANYI, T. & GIBSON, W. C. ( 1996). Genetic heterogeneity in the Trypanosoma brucei gambiense genome analysed by random amplification of polymorphic DNA. Parasitology Research 82, 535541.CrossRefGoogle Scholar
KHAN, R. A. ( 1977). Susceptibility of marine fish to trypanosomes. Canadian Journal of Zoology 55, 12351241.CrossRefGoogle Scholar
KOLESNIKOV, A. A., JIRKU, M., PECKOVA, H., POLAK, A., MASLOV, D. A. & LUKES, J. ( 1995). Analysis of kinetoplast DNA of freshwater fish trypanosomes. Folia Parasitologica 42, 251254.Google Scholar
LAVERAN, A. & MESNIL, F. ( 1902). Des trypanosomes des poissons. Archiv für Protistenkunde 1, 475498.Google Scholar
LETCH, C. A. ( 1979). Host restriction, morphology and isoenzymes among trypanosomes of some freshwater fishes. Parasitology 79, 107117.CrossRefGoogle Scholar
LETCH, C. A. ( 1980). The life-cycle of Trypanosoma cobitis Mitrophanow 1883. Parasitology 80, 163169.CrossRefGoogle Scholar
LOM, J. ( 1973). Experimental infections of freshwater fishes with blood flagellates. Journal of Protozoology 20, 537.Google Scholar
LOM, J. ( 1979). Biology of the trypanosomes and trypanoplasms of fish. In Biology of the Kinetoplastida, Vol. 2 ( ed. Lumsden, W. H. R. & Evans, D. A.), pp. 269337. Academic Press, London.
LOM, J. & DYKOVA, I. ( 1992). Protozoan Parasites of Fishes. Elsevier, Amsterdam.
MASLOV, D. A., LUKES, J., JIRKU, M. & SIMPSON, L. ( 1996). Phylogeny of trypanosomes as inferred from the small and large subunit rRNAs: implications for the evolution of parasitism in the trypanosomatid protozoa. Molecular and Biochemical Parasitology 75, 197205.CrossRefGoogle Scholar
OVERATH, P., HAAG, J., MAMEZA, M. G. & LISCHKE, A. ( 1999). Freshwater fish trypanosomes: definition of two types, host control by antibodies and lack of antigenic variation. Parasitology 119, 591601.CrossRefGoogle Scholar
STEVENS, J. R., NOYES, H., DOVER, G. A. & GIBSON, W. C. ( 1999). The ancient and divergent origins of the human pathogenic trypanosomes, Trypanosoma brucei and T. cruzi. Parasitology 118, 107116.CrossRefGoogle Scholar
STEVENS, J. R., NOYES, H. A., SCHOFIELD, C. J. & GIBSON, W. ( 2001). The molecular evolution of Trypanosomatidae. Advances in Parasitology 48, 156.CrossRefGoogle Scholar
SWOFFORD, D. L. ( 2003). PAUP*: Phylogenetic Analysis Using Parsimony (* and other methods). Version 4. Sinauer Associates, Sunderland, Massachusetts.
THOMPSON, J. D., GIBSON, T. J., PLEWNIAK, F., JEANMOUGIN, F. & HIGGINS, D. G. ( 1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25, 48764882.CrossRefGoogle Scholar
TIBAYRENC, M., NEUBAUER, K., BARNABE, C., GUERRINI, F., SKARECKY, D. & AYALA, F. J. ( 1993). Genetic characterization of six parasitic protozoa: parity between random-primer DNA typing and multilocus enzyme electrophoresis. Proceedings of the National Academy of Sciences, USA 90, 13351339.CrossRefGoogle Scholar
VAN DER PLOEG, L. H. T., BERNARDS, A., RIJSEWIJK, F. & BORST, P. ( 1982). Characterisation of the DNA duplication-transposition that controls the expression of two genes for variant surface glycoproteins in Trypanosoma brucei. Nucleic Acids Research 10, 593609.CrossRefGoogle Scholar
WELSH, J. & McCLELLAND, M. ( 1990). Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Research 18, 72137218.CrossRefGoogle Scholar
WILLIAMS, J. G. K., KUBELIK, A. R., LIVAK, K. J., RAFALSKI, A. J. & TINGEY, S. V. ( 1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research 18, 65316535.CrossRefGoogle Scholar
WOO, P. T. K. ( 1994). Flagellate parasites of fish. In Parasitic Protozoa, Vol. 8 ( ed. Kreier, J. P.), pp. 180. Academic Press, London.CrossRef
WOO, P. T. K. & BLACK, G. A. ( 1984). Trypanosoma danilewskyi: Host specificity and host's effects on morphometrics. Journal of Parasitology 70, 788793.CrossRefGoogle Scholar
ZAJICEK, P. ( 1991). Enzyme polymorphism of freshwater fish trypanosomes and its use for strain identification. Parasitology 102, 221224.CrossRefGoogle Scholar
ZINTL, A., VOORHEIS, H. P. & HOLLAND, C. V. ( 2000). Experimental infections of farmed eels with different Trypanosoma granulosum life-cycle stages and investigation of pleomorphism. Journal of Parasitology 86, 5659.CrossRefGoogle Scholar