Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-09T06:01:19.943Z Has data issue: false hasContentIssue false

Parasitism and growth in the earthworm Lumbricus terrestris: fitness costs of the gregarine parasite Monocystis sp.

Published online by Cambridge University Press:  01 November 2004

S. G. FIELD
Affiliation:
Department of Evolutionary Biology, Institute of Animal Ecology and Evolution, Universität Münster, Hüfferstrasse 1, 48149 Münster, Germany
N. K. MICHIELS
Affiliation:
Department of Evolutionary Biology, Institute of Animal Ecology and Evolution, Universität Münster, Hüfferstrasse 1, 48149 Münster, Germany

Abstract

Parasites inflict fitness costs on their hosts, but often the exact reduction in fitness is not well understood. We investigated the influence of infection by the gregarine genus Monocystis sp. on growth and female investment (cocoon production) of its earthworm host, Lumbricus terrestris. Earthworms (n=81) were observed in a laboratory setting for 8 months, after which parasite load was determined. The results revealed a significant negative relationship between parasite load and growth, yet no association to cocoon production was found. Although the exact nature, strength, and evolutionary consequence of reduced growth are still unclear, the results are the first indication for a clear, albeit weak effect of Monocystis on host fitness.

Type
Research Article
Copyright
2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

ADAMO, S. A., JENSEN, M. & YOUNGER, M. ( 2001). Changes in lifetime immunocompetence in male and female Gryllus texensis (formerly G. integer): trade-offs between immunity and reproduction. Animal Behaviour 62, 417425.Google Scholar
ANGELONI, L., BRADBURY, J. W. & BURTON, R. S. ( 2003). Multiple mating, paternity, and body size in a simultaneous hermaphrodite, Aplysia californica. Behavioural Ecology 14, 554560.CrossRefGoogle Scholar
ARNOTT, S. A., BARBER, I. & HUNTINGFORD, F. A. ( 2000). Parasite-associated growth enhancement in a fish-cestode system. Proceedings of the Royal Society of London, B 267, 675663.CrossRefGoogle Scholar
BAUR, B. ( 1992). Random mating by size in the simultaneously hermaphroditic land snail Arianata arbustorum: experiments and an explanation. Animal Behaviour 43, 511518.CrossRefGoogle Scholar
BELL, G. & KOUFOPANOU, V. ( 1986). The cost of reproduction. In Oxford Series in Evolutionary Biology, 3rd Edn, (ed. Dawkins, R. & Ridley, M.), pp. 83131. Oxford University Press, Oxford, UK.
BILEJ, M., BRYS, L., BESCHIN, A., LUCAS, R., VERCAUTEREN, E., HANUSOVA, R. & DE BAETSELIER, P. ( 1995). Identification of a cytolytic protein in the coelomic fluid of Eisenia foetida earthworms. Immunology Letters 45, 123128.CrossRefGoogle Scholar
BUSH, A. O., FERNÁNDEZ, J. C., ESCH, G. W. & SEED, R. J. ( 2001). Parasitism: the Diversity and Ecology of Animal Parasites. Cambridge University Press, Cambridge, UK.
BUTT, K. R. & NUUTINEN, V. ( 1998). Reproduction of the earthworm Lumbricus terrestris Linné after first mating. Canadian Journal of Zoology 76, 104109.CrossRefGoogle Scholar
CIKUTOVIC, M. A., FITZPATRICK, L. C., VENABLES, B. J. & GOVEN, A. J. ( 1993). Sperm count in earthworms (Lumbricus terrestris) as a biomarker for environmental toxicology – effects of cadmium and chlordane. Environmental Pollution 81, 123125.CrossRefGoogle Scholar
COOPER, E. L., ACTON, R. T., WEINHEIM, P. F. & EVANS, E. E. ( 1969). Lack of a bactericidal response in earthworm Lumbricus terrestris after immunization with bacterial antigens. Journal of Invertebrate Pathology 14, 402406.CrossRefGoogle Scholar
COOPER, E. L. & ROCH, P. ( 2003). Earthworm immunity: a model of immune competence. Pedobiologia 47, 113.CrossRefGoogle Scholar
DEWITT, T. J. ( 1996). Gender contests in a simultaneous hermaphrodite snail – a size advantage model for behaviour. Animal Behaviour 51, 345351.CrossRefGoogle Scholar
EDWARDS, C. A. & BOHLEN, P. J. ( 1996). Biology and Ecology of Earthworms, 3rd Edn. Chapman and Hall, London, UK.
FARMER, J. N. ( 1980). The Protozoa: Introduction to Protozoology. C.V. Mosby Co., St Louis. USA.
FIELD, S. G., SCHIRP, H. J. & MICHIELS, N. K. ( 2003). The influence of Monocystis sp. infection on growth and mating behaviour of the earthworm Lumbricus terrestris. Canadian Journal of Zoology 81, 11611167.Google Scholar
FIELD, S. G., KURTZ, J., COOPER, E. L. & MICHIELS, N. K. ( 2004). Evaluation of an innate immune reaction to parasites in earthworms. Journal of Invertebrate Pathology 86, 4549.CrossRefGoogle Scholar
GOLDOVA, M. & BREZA, M. ( 1999). Earthworms (Lumbricidae) from the viewpoint of veterinary parasitology. Folia Veterinary 43, 154157.Google Scholar
GROVE, A. J. ( 1925). On the reproductive processes of the earthworm, Lumbricus terrestris. Quarterly Journal of Microscopy Science 69, 245290.Google Scholar
HANNA, S. H. S. & WEAVER, R. W. ( 2002). Earthworm survival in oil contaminated soil. Plant Soil 240, 127132.CrossRefGoogle Scholar
KAUSCHKE, E., PAGLIARA, P., STABILI, L. & COOPER, E. L. ( 1997). Characterization of proteolytic activity in coelomic fluid of Lumbricus terrestris. Comparative Biochemistry and Physiology: Part B 116, 235242.CrossRefGoogle Scholar
KRIST, A. C. & LIVELY, C. M. ( 1998). Experimental exposure of juvenile snails (Potamopyrgus antipodarum) to infection by trematode larvae (Microphallus sp.): infectivity, fecundity compensation and growth. Oecologia 116, 575582.Google Scholar
LÜSCHER, A. & WEDEKIND, C. ( 2002). Size-dependent discrimination of mating partners in the simultaneous hermaphroditic cestode Schistocephalus solidus. Behavioural Ecology 13, 254259.CrossRefGoogle Scholar
MEIER, J. R., CHANG, L. W., JACOBS, S., TORSELLA, J., MECKES, M. C. & SMITH, M. K. ( 1997). Use of plant and earthworm bioassays to evaluate remediation of soil from a site contaminated with polychlorinated biphenyls. Environmental Toxicology and Chemistry 16, 928938.CrossRefGoogle Scholar
MICHIELS, N. K., HOHNER, A. & VORNDRAN, I. C. ( 2001). Precopulatory mate assessment in relation to body size in the earthworm Lumbricus terrestris: avoidance of dangerous liaisons? Behavioural Ecology 12, 612618.Google Scholar
NUUTINEN, V. & BUTT, K. R. ( 1997). Pre-mating behaviour of the earthworm Lumbricus terrestris L. Soil Biology and Biochemistry 29, 307308.CrossRefGoogle Scholar
PETERS, A. & MICHIELS, N. K. ( 1996). Do simultaneous hermaphrodites choose their mates? Effects of body size in a planarian flatworm. Freshwater Biology 36, 623630.CrossRefGoogle Scholar
PIŽL, V. ( 1985). The effect of the herbicide Zeazin 50 on the earthworm infection by Monocystid gregarines. Pedobiologia 28, 399402.Google Scholar
REINHART, M. & DOLLAHON, N. ( 2003). Responses of coelomocytes from Lumbricus terrestris to native and non-native eukaryotic parasites. Pedobiologia 47, 710716.CrossRefGoogle Scholar
ROLFF, J. & SIVA-JOTHY, M. T. ( 2003). Invertebrate ecological immunity. Science 301, 472475.CrossRefGoogle Scholar
SCHÄRER, L., KARLSSON, L. M., CHRISTEN, M. & WEDEKIND, C. ( 2001). Size-dependent sex allocation in a simultaneous hermaphrodite parasite. Journal of Evolutionary Biology 14, 5567.CrossRefGoogle Scholar
SCHMID-HEMPEL, P. ( 2003). Variation in immune defence as a question of evolutionary ecology. Proceedings of the Royal Society of London, B 270, 357366.CrossRefGoogle Scholar
SCHMIDT, G. D. & ROBERTS, L. S. ( 2000). Foundations of Parasitology, 6th Edn. McGraw-Hill Publishing, Boston, USA.
SIMS, R. W. & GERARD, B. M. ( 1985). Earthworms. Synopses of the British Fauna (new series): No. 31. The Linnean Society of London and The Estuarine and Brackish-Water Sciences Association, Brill and Backhuys, London, UK.
THOMAS, F. & POULIN, R. ( 1998). Manipulation of a mollusc by a trophically transmitted parasite: convergent evolution or phylogenetic inheritance? Parasitology 116, 431436.Google Scholar
VAN NOORDWIJK, A. J. & DE JONG, G. ( 1986). Acquisition and allocation of resources – their influence on variation in life-history tactics. American Naturalist 128, 137142.CrossRefGoogle Scholar
WEBSTER, J. P. & WOOLHOUSE, M. E. J. ( 1999). Cost of resistance: relationship between reduced fertility and increased resistance in a snail–schistosome host–parasite system. Proceedings of the Royal Society of London, B 266, 391396.CrossRefGoogle Scholar
WEDEKIND, C., STRAHM, D. & SCHÄRER, L. ( 1998). Evidence for strategic egg production in a hermaphroditic cestode. Parasitology 117, 373382.CrossRefGoogle Scholar