Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-03T15:01:13.418Z Has data issue: false hasContentIssue false

Parasites as valuable stock markers for fisheries in Australasia, East Asia and the Pacific Islands

Published online by Cambridge University Press:  06 March 2014

R. J. G. LESTER*
Affiliation:
School of Biological Sciences, University of Queensland, Brisbane, Australia
B. R. MOORE
Affiliation:
Coastal Fisheries Program, Secretariat of the Pacific Community, Noumea, New Caledonia
*
* Corresponding author: School of Biological Sciences, University of Queensland, Brisbane, Qld 4072, Australia. E-mail: [email protected]

Summary

Over 30 studies in Australasia, East Asia and the Pacific Islands region have collected and analysed parasite data to determine the ranges of individual fish, many leading to conclusions about stock delineation. Parasites used as biological tags have included both those known to have long residence times in the fish and those thought to be relatively transient. In many cases the parasitological conclusions have been supported by other methods especially analysis of the chemical constituents of otoliths, and to a lesser extent, genetic data. In analysing parasite data, authors have applied multiple different statistical methodologies, including summary statistics, and univariate and multivariate approaches. Recently, a growing number of researchers have found non-parametric methods, such as analysis of similarities and cluster analysis, to be valuable. Future studies into the residence times, life cycles and geographical distributions of parasites together with more robust analytical methods will yield much important information to clarify stock structures in the area.

Type
Fisheries
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adlard, R. D. and Lester, R. J. G. (1994). Dynamics of the interaction between the parasitic isopod, Anilocra pomacentri, and the coral reef fish, Chromis nitida . Parasitology 109, 311324.CrossRefGoogle ScholarPubMed
Anderson, M. J. (2001). A new method for non-parametric multivariate analysis of variance. Austral Ecology 26, 3246. doi: 10.1111/j.1442-9993.2001.01070.pp.x.Google Scholar
Avdeev, G. V. (1996). Infestation by helminths and redistribution of immature walleye pollock Theragra chalcogramma in the Sea of Okhotsk. Journal of Ichthyology 36, 665673.Google Scholar
Awakura, T., Nagasawa, K. and Urawa, S. (1995). Occurrence of Myxobolus arcticus and M. neurobius (Myxozoa: Myxosporea) in masu salmon (Oncorhynchus masou) from northern Japan. Scientific Reports of the Hokkaido Salmon Hatchery 49, 3540.Google Scholar
Bayliff, W. H. (1988). Integrity of schools of skipjack tuna, Katsuwonus pelamis, in the eastern Pacific Ocean, as determined from tagging data. US National Marine Fisheries Service Fishery Bulletin 86, 631643.Google Scholar
Beeton, R. J. S. (2008). Advice to the Minister for the Environment, Heritage and the Arts from the Threatened Species Scientific Committee (the Committee) on Amendments to the list of Threatened Species. http://www.environment.gov.au/biodiversity/threatened/species/pubs/76339-listing-advice.pdf.Google Scholar
Begg, G. A. and Waldman, J. R. (1999). An holistic approach to fish stock identification. Fisheries Research 43, 3544. doi: 10.1016/S0165-7836(99)00065-X.CrossRefGoogle Scholar
Begg, G. A., Hare, J. A. and Sheehan, D. D. (1999). The role of life history parameters as indicators of stock structure. Fisheries Research 43, 141163. doi: 10.1016/S0165-7836(99)00071-5.CrossRefGoogle Scholar
Botsford, L. W., Brumbaugh, D. R., Grimes, C., Kellner, J. B., Largier, J., O'Farrell, M. R., Ralston, S., Soulanille, E. and Wespestad, V. (2009). Connectivity, sustainability, and yield: bridging the gap between conventional fisheries management and marine protected areas. Reviews in Fish Biology and Fisheries 19, 6995. doi: 10.1007/s11160-008-9092-z.CrossRefGoogle Scholar
Broderick, D., Ovenden, J. R., Buckworth, R. C., Newman, S. J., Lester, R. J. G. and Welch, D. J. (2011). Genetic population structure of grey mackerel Scomberomorus semifasciatus in northern Australia. Journal of Fish Biology 79, 633661. doi: 10.1111/j.1095-8649.2011.03055.x.CrossRefGoogle ScholarPubMed
Buckworth, R. C., Newman, S. J., Ovenden, J. R., Lester, R. J. G. and McPherson, G. R. (2007). The Stock Structure of Northern and Western Australian Spanish Mackerel. Department of Primary Industry, Fisheries and Mines, Northern Territory Government, Australia.Google Scholar
Cappo, M. (1992). Australian salmon; parasites as biological fish tags. Safish Magazine 17, 710.Google Scholar
Charters, R. A., Lester, R. J. G., Buckworth, R. C., Newman, S. J., Ovenden, J. R., Broderick, D., Kravchuk, O., Ballagh, A. and Welch, D. J. (2010). The stock structure of grey mackerel Scomberomorus semifasciatus in Australia as inferred from its parasite fauna. Fisheries Research 101, 9499. doi: 10.1016/j.fishres.2009.09.011.CrossRefGoogle Scholar
Clarke, K. R. (1993). Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18, 117143. doi: 10.1111/j.1442-9993.1993.tb00438.x.CrossRefGoogle Scholar
Clarke, K. R., Somerfield, P. J. and Gorley, R. N. (2008). Testing of null hypotheses in exploratory community analyses: similarity profiles and biota-environment linkage. Journal of Experimental Marine Biology and Ecology 366, 5669. doi: 10.1016/j.jembe.2008.07.009.CrossRefGoogle Scholar
Colgan, D. J. and Paxton, J. R. (1997). Biochemical genetics and recognition of a western stock of the common gemfish, Rexea solandri (Scombroidea: Gempylidae), in Australia. Marine and Freshwater Research 48, 103118. doi: 10.1071/MF96048.CrossRefGoogle Scholar
Cribb, T. H., Anderson, G. R. and Dove, A. D. M. (2000). Pomphorhynchus heronensis and restricted movement of Lutjanus carponotatus on the Great Barrier Reef. Journal of Helminthology 74, 5356.CrossRefGoogle ScholarPubMed
Day, R. W. and Quinn, G. P. (1989). Comparisons of treatments after an analysis of variance in ecology. Ecological Monographs 59, 433463.CrossRefGoogle Scholar
Flood, M., Stobutzki, I., Andrews, J., Begg, G., Fletcher, W., Gardner, C., Kemp, J., Moore, A., O'Brien, A., Quinn, R., Roach, J., Rowling, K., Sainsbury, K., Saunders, T., Ward, T. and Winning, M. (eds.) (2012). Status of Key Australian Fish Stocks Reports 2012. Fisheries Research and Development Corporation, Canberra, Australia.Google Scholar
Friend, G. F. (1940). The life history and ecology of the salmon gill-maggott Salmincola salmonea (L.) (copepod crustacean). Transactions of the Royal Society of Edinburgh 60, 503541.CrossRefGoogle Scholar
Gauldie, R. W. and Jones, J. B. (2000). Stocks, or geographically separated populations of the New Zealand orange roughy, Hoplostethus atlanticus, in relation to parasite infestation, growth rate, and otolith shape. Bulletin of Marine Science 67, 949971.Google Scholar
Grutter, A. S. (1998). Habitat-related differences in the abundance of parasites from a coral reef fish: an indication of the movement patterns of Hemigymnus melapterus . Journal of Fish Biology 53, 4957. doi: 10.1111/j.1095-8649.1998.tb00108.x.Google Scholar
Heuch, P. A., Knutsen, J. A., Knutsen, H. and Schram, T. A. (2002). Salinity and temperature effects on sea lice over-wintering on sea trout (Salmo trutta) in coastal areas of the Skagerrak. Journal of the Marine Biological Association of the United Kingdom 82, 887892. doi: 10.1017/S0025315402006306.CrossRefGoogle Scholar
Hoffman, G. L. (1977). Copepod Parasites of Freshwater Fish: Ergasilus, Achtheres, and Salmincola. US Fish and Wildlife Service, Fish Disease Leaflet No. 48.Google Scholar
Horne, J. B., Momigliano, P., Welch, D. J., Newman, S. J. and van Herwerden, L. (2011). Limited ecological population connectivity suggests low demands on self-recruitment in a tropical inshore marine fish (Eleutheronema tetradactylum: Polynemidae). Molecular Ecology 20, 22912306. doi: 10.1111/j.1365-294X.2011.05097.x.CrossRefGoogle Scholar
Horne, J. B., Momigliano, P., Welch, D. J., Newman, S. J. and van Herwerden, L. (2012). Searching for common threads in threadfins: phylogeography of Australian polynemids in space and time. Marine Ecology Progress Series 449, 263276. doi: 10.3354/meps09557.CrossRefGoogle Scholar
Hughes, S. E. (1973). Some metazoan parasites of Eastern pacific saury, Cololabis saira . Fishery Bulletin 71, 943952.Google Scholar
Hutson, K. S., Ernst, I., Mooney, A. J. and Whittington, I. D. (2007). Metazoan parasite assemblages of wild Seriola lalandi (Carangidae) from eastern and southern Australia. Parasitology International 56, 95105. doi: 10.1016/j.parint.2006.12.003.CrossRefGoogle ScholarPubMed
Hutson, K. S., Brock, E. L. and Steer, M. A. (2011). Spatial variation in parasite abundance: evidence of geographical population structuring in southern garfish Hyporhamphus melanochir . Journal of Fish Biology 78, 166182. doi: 10.1111/j.1095-8649.2010.02849.x.CrossRefGoogle ScholarPubMed
IUCN (2013). The IUCN Red List of Threatened Species. Version 2013.2. http://www.iucnredlist.org/.Google Scholar
Jones, J. B. (1991). Movements of albacore tuna (Thunnus alalunga) in the South Pacific: evidence from parasites. Marine Biology 111, 19.CrossRefGoogle Scholar
Kabata, Z. (1958). Lernaeocera obtusa n. sp. Its biology and its effects on the haddock. Scottish Home Department Marine Research 3, 126.Google Scholar
Kabata, Z. and Cousins, B. (1973). Life cycle of Salmincola californiensis (Dana 1852) (Copepoda: Lernaeopodidae). Journal of the Fisheries Research Board of Canada 30, 881903.CrossRefGoogle Scholar
Kailola, P. J., Williams, M. J., Stewart, P. C., Reichelt, R. E., McNee, A. and Grieve, C. (1993). Australian Fisheries Resources. Bureau of Rural Resources, Canberra, Australia.Google Scholar
Karlsbakk, E., Skajaa, K. and Nylund, A. (2003). Parasites of cultured herring (Clupea harengus) larvae fed natural zooplankton. Bulletin of the European Association of Fish Pathologists 23, 2534.Google Scholar
Kearn, G. C. (1990). The rate of development and longevity of the monogenean skin parasite Entobdella soleae . Journal of Helminthology 64, 340342.CrossRefGoogle ScholarPubMed
Kleiber, P., Argue, A. W. and Kearney, R. E. (1987). Assessment of Pacific skipjack tuna (Katsuwonus pelamis) resources by estimating standing stock and components of population turnover from tagging data. Canadian Journal of Fisheries and Aquatic Sciences 44, 11221134. doi: 10.1139/f99-017.CrossRefGoogle Scholar
Konishi, K. and Sakurai, Y. (2002). Geographical variations in infection by larval Anisakis simplex and Contracaecum osculatum (Nematoda, Anisakidae) in walleye pollock Theragra chalcogramma stocks off Hokkaido, Japan. Fisheries Science 68, 534542. doi: 10.1046/j.1444-2906.2002.00459.x.CrossRefGoogle Scholar
Lester, R. J. G. (1980). Host-parasite relations in some didymozoid trematodes. Journal of Parasitology 66, 527531.CrossRefGoogle Scholar
Lester, R. J. G. (1990). Reappraisal of the use of parasites for fish stock identification. Australian Journal of Marine and Freshwater Research 41, 855864. doi: 10.1071/MF9900855.CrossRefGoogle Scholar
Lester, R. J. G. (2012). Overdispersion in marine fish parasites. Journal of Parasitology 98, 718721. doi: 10.1645/GE-3017.1.CrossRefGoogle ScholarPubMed
Lester, R. J. G. and MacKenzie, K. (2009). The use and abuse of parasites as stock markers for fish. Fisheries Research 97, 12. doi: 10.1016/j.fishres.2008.12.016.CrossRefGoogle Scholar
Lester, R. J. G., Barnes, A. and Habib, G. (1985). Parasites of skipjack tuna: fishery implications. Fishery Bulletin 83, 343356.Google Scholar
Lester, R. J. G., Sewell, K. B., Barnes, A. and Evans, K. (1988). Stock discrimination of orange roughy Hoplostethus atlanticus by parasite analysis. Marine Biology 99, 5763.CrossRefGoogle Scholar
Lester, R. J. G., Thompson, C., Moss, H. and Barker, S. C. (2001). Movement and stock structure of narrow-barred Spanish mackerel as indicated by parasites. Journal of Fish Biology 59, 833842. doi: 10.1006/jfbi.2001.1696.Google Scholar
Lester, R. J. G., Rawlinson, S. E. and Weaver, L. C. (2009). Movement of sea mullet Mugil cephalus as indicated by a parasite. Fisheries Research 96, 129132. doi: 10.1016/j.fishres.2008.10.006.CrossRefGoogle Scholar
Li, W. X., Song, R., Wu, S. G., Zou, H., Nie, P. and Wang, G. T. (2011). Seasonal occurrence of helminths in the anadromous fish Coilia nasus (Engraulidae): parasite indicators of fish migratory movements. Journal of Parasitology 97, 192196. doi: 10.1645/GE-2621.1.CrossRefGoogle ScholarPubMed
Li, W. X., Zou, H., Wu, S. G., Song, R. and Wang, G. T. (2012). Richness and diversity of helminth communities in the Japanese grenadier anchovy, Coilia nasus, during its anadromous migration in the Yangtze River, China. Journal of Parasitology 98, 449452. doi: 10.1645/GE-2983.1.CrossRefGoogle ScholarPubMed
Llewellyn, J. (1962). The life histories and population dynamics of monogenean gill parasites of Trachurus trachurus (L.). Journal of the Marine Biological Association of the United Kingdom 42, 587600.CrossRefGoogle Scholar
Lo, C. M., Morand, S. and Galzin, R. (1999). Le parasitisme des poissons coralliens. Reflet de l'habitat? Comptes Rendus de l'Academie des Sciences 322, 281287.Google Scholar
Lucas, C., Kirkwood, G., and Somers, I. (1979). An assessment of the stocks of the banana prawn Penaeus merguiensis in the Gulf of Carpentaria. Australian Journal of Marine and Freshwater Research 30, 639652. doi: 10.1071/MF9790639.CrossRefGoogle Scholar
Mapstone, B. D. (1995). Scalable decision rules for environmental impact studies: effect size, type I, and type II errors. Ecological Applications 5, 401410.CrossRefGoogle Scholar
Mardia, K. V., Kent, J. T. and Bibby, J. M. (1979). Multivariate Analysis. Academic Press, New York, NY, USA.Google Scholar
Margolis, L. and Boyce, N. P. (1969). Life span, maturation, and growth of two hemiurid trematodes, Tubulovesicula lindbergi and Lecithaster gibbosus in Pacific salmon (genus Oncorhynchus). Journal of the Fisheries Research Board of Canada 26, 893907.CrossRefGoogle Scholar
McDonald, J. H. (2009). Handbook of Biological Statistics, 2nd Edn. Sparky House Publishing, Baltimore, MD, USA.Google Scholar
McLeod, D. J., Hobday, A. J., Lyle, J. M. and Welsford, D. C. (2012). A prey-related shift in abundance of small pelagic fish in eastern Tasmania? ICES Journal of Marine Science 69, 953960. doi: 10.1093/icesjms/fss069.CrossRefGoogle Scholar
Mladineo, I., Segvic, T. and Petric, M. (2011). Do captive conditions favour shedding of parasites in the reared Atlantic bluefin tuna (Thunnus thynnus)? Parasitology International 60, 2533. doi: 10.1016/j.parint.2010.09.007.CrossRefGoogle ScholarPubMed
Miller, P. A., Fitch, A. J., Gardner, M., Hutson, K. S. and Mair, G. (2011). Genetic population structure of yellowtail kingfish (Seriola lalandi) in temperate Australasian waters inferred from microsatellite markers and mitochondrial DNA. Aquaculture 319, 328336. doi: 10.1016/j.aquaculture.2011.05.036.CrossRefGoogle Scholar
Moller, H. (1976). Reduction of the intestinal parasite fauna of marine fishes in captivity. Journal of the Marine Biological Association of the United Kingdom 56, 781785.CrossRefGoogle Scholar
Moore, B. R. (2011). Movement, connectivity and population structure of a large, non-diadromous, tropical estuarine teleost. PhD thesis. James Cook University, Townsville, Queensland, Australia.Google Scholar
Moore, B. R. and Simpfendorfer, C. A. (in press). Assessing connectivity of a tropical estuarine teleost through otolith elemental profiles. Marine Ecology Progress Series.Google Scholar
Moore, B. R., Buckworth, R. C., Moss, H. and Lester, R. J. G. (2003). Stock discrimination and movements of narrow-barred Spanish mackerel across northern Australia as indicated by parasites. Journal of Fish Biology 63, 765779. doi: 10.1046/j.1095-8649.2003.00190.x.CrossRefGoogle Scholar
Moore, B. R., Stapley, J., Allsop, Q., Newman, S. J., Ballagh, A., Welch, D. J. and Lester, R. J. G. (2011). Stock structure of blue threadfin Eleutheronema tetradactylum across northern Australia, as indicated by parasites. Journal of Fish Biology 78, 923936. doi: 10.1111/j.1095-8649.2011.02917.x.CrossRefGoogle ScholarPubMed
Moore, B. R., Welch, D. J., Newman, S. J. and Lester, R. J. G. (2012 a). Parasites as indicators of movement and population connectivity of a non-diadromous, tropical estuarine teleost: king threadfin Polydactylus macrochir . Journal of Fish Biology 81, 230252. doi: 10.1111/j.1095-8649.2012.03335.x.CrossRefGoogle ScholarPubMed
Moore, B. R., Simpfendorfer, C. A., Newman, S. J., Stapley, J. M., Allsop, Q., Sellin, M. and Welch, D. J. (2012 b). Spatial variation in life history reveals insight into connectivity and geographic population structure of a tropical estuarine teleost: king threadfin, Polydactylus macrochir . Fisheries Research 125–126, 214224. doi: 10.1016/j.fishres.2012.02.028.CrossRefGoogle Scholar
Murray, T. (1994). A review of the biology and fisheries for albacore, Thunnus alalunga, in the South Pacific Ocean. In Interactions of Pacific Tuna Fisheries (ed. Shomura, R. S., Majkowski, J. and Langi, S.), pp. 188206. FAO Fisheries Technical Paper 336/2. Rome, Italy.Google Scholar
Nagasawa, K. and Maruyama, S. (1987). Occurrence and effects of Haemobaphes diceraus (Copepoda: Pennellidae) on brown sole Limanda herzensteini off the Okhotsk coast of Hokkaido. Nippon Suisan Gakkaishi 53, 991994.CrossRefGoogle Scholar
Nagasawa, K., Imai, Y. and Ishida, K. (1985). Distribution, abundance, and effects of Pennella sp. (Copepoda: Pennellidae), parasitic on the saury, Cololabis saira (Brevoort), in the western North Pacific Ocean and adjacent seas, 1984. Bulletin of the Biogeographical Society of Japan 40, 3542.Google Scholar
Nagasawa, K., Imai, Y. and Ishida, K. (1988). Long-term changes in the population size and geographical distribution of Pennella sp. (Copepoda) on the saury, Cololabis saira, in the western North Pacific Ocean and adjacent seas. Hydrobiologia 167, 571577. doi: 10.1007/BF00026355.CrossRefGoogle Scholar
Nagasawa, K., Mori, J. and Okamura, H. (1998). Parasites as biological tags of stocks of neon flying squid (Ommastrephes bartramii) in the North Pacific Ocean. In Contributed Papers to International Symposium on Large Pelagic Squids (ed. Okutani, T.), pp. 4964. Japan Marine Fisheries Research Centre, Tokyo, Japan.Google Scholar
Newman, S. J., Wright, I. W., Rome, B. M., Mackie, M. C., Lewis, P. D., Buckworth, R. C., Ballagh, A. C., Garrett, R. N., Stapley, J., Broderick, D., Ovenden, J. R. and Welch, D. J. (2010 a). Stock structure of grey mackerel, Scomberomorus semifasciatus (Pisces: Scombridae) across northern Australia, based on otolith stable isotope chemistry. Environmental Biology of Fishes 89, 357367. doi: 10.1007/s10641-010-9668-z.CrossRefGoogle Scholar
Newman, S. J., Allsop, Q., Ballagh, A. C., Garrett, R. N., Gribble, N., Meeuwig, J. J., Mitsopoulos, G. E. A., Moore, B. R., Pember, M. B., Rome, B. M., Saunders, T., Skepper, C. L., Stapley, J., van Herwerden, L. and Welch, D. J. (2010 b). Variation in stable isotope (δ18O and δ13C) signatures in the sagittal otolith carbonate of king threadfin, Polydactylus macrochir, across northern Australia reveals multifaceted stock structure. Journal of Experimental Marine Biology and Ecology 396, 5360. doi: 10.1016/j.jembe.2010.09.011.CrossRefGoogle Scholar
Newman, S. J., Allsop, Q., Ballagh, A. C., Garrett, R. N., Gribble, N., Horne, J. B., Meeuwig, J. J., Moore, B. R., Pember, M. B., Rome, B. M., Saunders, T., Stapley, J., van Herwerden, L. and Welch, D. J. (2011). The stock structure of blue threadfin, Eleutheronema tetradactylum, across northern Australia as inferred from stable isotopes in sagittal otolith carbonate. Fisheries Management and Ecology 18, 246257. doi: 10.1111/j.1365-2400.2010.00780.x.CrossRefGoogle Scholar
Owens, L. (1981). Relationships between some environmental parameters and trypanorhynch cestode loads in banana prawns (Penaeus merguiensis de Man). Australian Journal of Marine and Freshwater Research 32, 469474. doi: 10.1071/MF9810469.CrossRefGoogle Scholar
Owens, L. (1983). Bopyrid parasite Epipenaeon ingens Nobili as a biological marker for the banana prawn, Penaeus merguiensis de Man. Australian Journal of Marine and Freshwater Research 34, 477481. doi: 10.1071/MF9830477.CrossRefGoogle Scholar
Owens, L. (1985). Polypocephalus sp. (Cestoda: Lecanicephalidae) as a biological marker for banana prawns, Penaeus merguiensis de Man, in the Gulf of Carpentaria. Australian Journal of Marine and Freshwater Research 36, 291299. doi: 10.1071/MF9850291.CrossRefGoogle Scholar
Palm, H. W. (2011). Fish parasites as biological indicators in a changing world: can we monitor environmental impact and climate change. In Progress in Parasitology. Parasitology Research Monographs, Vol. 2 (ed. Mehlhorn, H.), pp. 223250. Springer, Berlin, Germany. doi: 10.1007/978-3-642-21396-0_12.Google Scholar
Rahimian, H. (2007). Parasites of fingerling herring Clupea harengus L.: ecology and fine morphology. Journal of Helminthology 81, 199217. doi: 10.1017/S0022149X07735381.CrossRefGoogle ScholarPubMed
Redfield, J. A., Hedgecock, D., Nelson, K., and Salini, J. P. (1980). Low heterozygosity in tropical marine crustaceans of Australia and the trophic stability hypothesis. Marine Biology Letters 1, 303313.Google Scholar
Rigby, M. C., Holmes, J. C., Cribb, T. H. and Morand, S. (1997). Patterns of species diversity in the gastrointestinal helminths of a coral reef fish, Epinephelus merra (Serranidae), from French Polynesia and the South Pacific Ocean. Canadian Journal of Zoology 75, 18181827.CrossRefGoogle Scholar
Rodríguez-Marín, E., Barreiro, S., Montero, F. E. and Carbonell, E. (2008). Looking for skin and gill parasites as biological tags for Atlantic bluefin tuna (Thunnus thynnus). Aquatic Living Resources 21, 365371. doi: 10.1051/alr:2008054.CrossRefGoogle Scholar
Rohde, K. (1976). Marine parasitology in Australia. Search 7, 477482.Google Scholar
Rohde, K. (1987). Different populations of Scomber australasicus in New Zealand and south-eastern Australia, demonstrated by a simple method using monogenean sclerites. Journal of Fish Biology 30, 651657. doi: 10.1111/j.1095-8649.1987.tb05794.x.CrossRefGoogle Scholar
Rohde, K. (1993). Ecology of Marine Parasites. CAB International, Wallingford, UK.CrossRefGoogle Scholar
Roubal, F. R. (1990). Seasonal changes in ectoparasite infection of juvenile yellowfin bream, Acanthopagrus australis (Gunther) (Pisces, Sparidae), from a small estuary in northern New South Wales. Australian Journal of Marine and Freshwater Research 41, 411427. doi: 10.1071/MF9900411.CrossRefGoogle Scholar
Scott, J. S. (1969). Trematode populations in the Atlantic argentine, Argentina silus, and their use as biological indicators. Journal of the Fisheries Research Board of Canada 26, 879891.CrossRefGoogle Scholar
Self, J. T., Peters, L. E. and Davis, C. E. (1963). The egg, miracidium, and adult of Nematobothrium texomensis (Trematoda: Digenea). Journal of Parasitology 49, 731736.CrossRefGoogle ScholarPubMed
Sewell, K. B. and Lester, R. G. J. (1995). Stock composition and movement of gemfish, Rexea solandri, as indicated by parasites. Canadian Journal of Fisheries and Aquatic Sciences 52 (Suppl. 1), 225232.CrossRefGoogle Scholar
Shotter, R. A. (1971). The biology of Clavella uncinata (Muller) (Crustacea: Copepoda). Parasitology 63, 419430.CrossRefGoogle ScholarPubMed
Slatkin, M. (1987). Gene flow and the geographic structure of natural populations. Science 236, 787792.CrossRefGoogle ScholarPubMed
Smolenski, A. J., Ovenden, J. R. and White, R. W. G. (1994). Preliminary investigation of mitochondrial DNA variation in jack mackerel (Trachurus declivis, Carangidae) from south-eastern Australian waters. Australian Journal of Marine and Freshwater Research 45, 495505. doi: 10.1071/MF9940495.CrossRefGoogle Scholar
Sokal, R. R. and Rohlf, F. J. (1995). Biometry, 3rd Edn. W. H. Freeman, New York, NY, USA.Google Scholar
Speare, P. (1994). Relationships among black marlin, Makaira indica, in eastern Australian coastal waters, inferred from parasites. Australian Journal of Marine and Freshwater Research 45, 535549. doi: 10.1071/MF9940535.CrossRefGoogle Scholar
Speare, P. (1995). Parasites as biological tags for sailfish Istiophorus platypterus from east coast Australian waters. Marine Ecology Progress Series 118, 4350.CrossRefGoogle Scholar
Staples, D. J. (1979). Seasonal migration patterns of postlarval and juvenile banana prawns, Penaeus merguiensis de Man, in the major rivers of the Gulf of Carpentaria, Australia. Australian Journal of Marine and Freshwater Research 30, 143158. doi: 10.1071/MF9790143.CrossRefGoogle Scholar
Steer, M. A., Halverson, G. P., Fowler, A. J. and Gillanders, B. M. (2010). Stock discrimination of southern garfish (Hyporhamphus melanochir) by stable isotope ratio analysis of otolith aragonite. Environmental Biology of Fishes 89, 369381. doi: 10.1007/s10641-010-9670-5.CrossRefGoogle Scholar
Theisen, T. C., Bowen, B. W., Lanier, W. and Baldwin, J. D. (2008). High connectivity on a global scale in the pelagic wahoo, Acanthocybium solandri (tuna family Scombridae). Molecular Ecology 17, 42334247. doi: 10.1111/j.1365-294X.2008.03913.x.CrossRefGoogle ScholarPubMed
Thresher, R. E. (1999). Elemental composition of otoliths as a stock delineator in fishes. Fisheries Research 43, 165204. doi: 10.1016/S0165-7836(99)00072-7.CrossRefGoogle Scholar
Thresher, R. E. and Proctor, C. H. (2007). Population structure and life history of orange roughy (Hoplostethus atlanticus) in the SW Pacific: inferences from otolith chemistry. Marine Biology 152, 461473. doi: 10.1007/s00227-007-0705-1.CrossRefGoogle Scholar
Umehara, A., Kawakami, Y., Ooi, H. K., Uchida, A., Ohmae, H. and Sugiyama, H. (2010). Molecular identification of Anisakis type I larvae isolated from hairtail fish off the coasts of Taiwan and Japan. International Journal of Food Microbiology 143, 161165. doi: 10.1016/j.ijfoodmicro.2010.08.011.CrossRefGoogle ScholarPubMed
Underwood, A. J. (1997). Experiments in Ecology. Their Logical Design and Interpretation Using Analysis of Variance. Cambridge University Press, Cambridge, UK.Google Scholar
Varela, A. I., Ritchie, P. A. and Smith, P. J. (2013). Global genetic population structure in the commercially exploited deep-sea teleost orange roughy (Hoplostethus atlanticus) based on microsatellite DNA analyses. Fisheries Research 140, 8390. doi: 10.1016/j.fishres.2012.12.011.CrossRefGoogle Scholar
Vignon, M., Morat, F., Galzin, R. and Sasal, P. (2008). Evidence for spatial limitation of the bluestripe snapper Lutjanus kasmira in French Polynesia from parasite and otolith shape analysis. Journal of Fish Biology 73, 23052320. doi: 10.1111/j.1095-8649.2008.02070.x.CrossRefGoogle Scholar
Waldman, J. R. (1999). The importance of comparative studies in stock analysis. Fisheries Research 43, 237246. doi: 10.1016/S0165-7836(99)00075-2.CrossRefGoogle Scholar
Waldman, J. R. (2005). Definition of stocks: an evolving concept. In Stock Identification Methods – Applications in Fishery Science (ed. Cadrin, S. X., Friedland, K. D. and Waldman, J. R.), pp. 716. Elsevier Academic Press, Burlington, MA, USA.CrossRefGoogle Scholar
Ward, P. and Caton, A. (1992). Why tag and release tunas? Australian Fisheries 51, 68.Google Scholar
Welch, D. J., Ballagh, A. C., Newman, S. J., Lester, R. J. G., Moore, B. R., van Herwerden, L., Horne, J. B., Allsop, Q., Broderick, D., Saunders, T., Stapley, J. M. and Gribble, N. A. (2010). Defining the Stock Structure of Northern Australia's Threadfin Salmon Species. Final report to the Fisheries Research and Development Corporation. Project 2007/032. Fishing and Fisheries Research Centre Technical Report No. 10, James Cook University, Townsville, Australia.Google Scholar
West, A. P. and Roubal, F. R. (1998). Experiments on the longevity, fecundity and migration of Anoplodiscus cirrusspiralis (Monogenea) on the marine fish Pagrus auratus (Bloch & Schneider) (Sparidae). Journal of Fish Diseases 21, 299303. doi: 10.1046/j.1365-2761.1998.00107.x.CrossRefGoogle ScholarPubMed
Wild, A. and Hampton, J. (1994). A review of the biology and fisheries for skipjack tuna, Katsuwonus pelamis, in the Pacific Ocean. FAO Fisheries Technical Paper (FAO).Google Scholar
Williams, A., Moran, M., Caputi, N. and Walters, C. (1993). Didymozoid trematode infection of snapper, Pagrus auratus (Sparidae), off Western Australia: parasite population biology and fishery implications. Fisheries Research 16, 113129. doi: 10.1016/0165-7836(93)90047-B.CrossRefGoogle Scholar
Williams, A. J., Nicol, S. J., Bentley, N., Starr, P. J., Newman, S. J., McCoy, M. A., Kinch, J., Williams, P. G., Magron, F., Pilling, G. M., Bertram, I. and Batty, M. (2012). International workshop for developing strategies for monitoring data-limited deepwater demersal line fisheries in the Pacific Ocean. Reviews in Fish Biology and Fisheries 22, 527531. doi: 10.1007/s11160-011-9234-6.CrossRefGoogle Scholar
Williams, R. E. and Lester, R. J. G. (2006). Stock structure of Spanish mackerel Scomberomorus commerson along the Australian east coast deduced from parasite data. Journal of Fish Biology 68, 17071712. doi: 10.1111/j.1095-8649.2006.01026.x.CrossRefGoogle Scholar
WPRFMC (2009). Fishery Ecosystem Plan for Pacific Pelagic Fisheries of the Western Pacific Region. Western Pacific Regional Fishery Management Council, Honolulu, Hawaii, USA.Google Scholar
Zischke, M. T., Cribb, T. H., Welch, D. J., Sawynok, W. and Lester, R. J. G. (2009). Stock structure of blue threadfin Eleutheronema tetradactylum on the Queensland east coast, as determined by parasites and conventional tagging. Journal of Fish Biology 75, 156171. doi: 10.1111/j.1095-8649.2009.02277.x.CrossRefGoogle ScholarPubMed
Zischke, M. T., Griffiths, S. P., Tibbetts, I. R. and Lester, R. J. G. (2013). Stock identification of wahoo (Acanthocybium solandri) in the Pacific and Indian Oceans using morphometrics and parasites. ICES Journal of Marine Science 70, 164172. doi: 10.1093/icesjms/fss164.CrossRefGoogle Scholar