Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T06:52:59.609Z Has data issue: false hasContentIssue false

Parasite-induced changes in the diet of a freshwater amphipod: field and laboratory evidence

Published online by Cambridge University Press:  14 January 2011

V. MÉDOC*
Affiliation:
UMR CNRS 7146 Laboratoire des Interactions Écotoxicologie, Biodiversité, Écosystèmes (LIEBE), Université Paul Verlaine, Metz – Campus Bridoux, Av du gal Delestraint 57070 Metz – Borny, France
C. PISCART
Affiliation:
UMR CNRS 5023 Laboratoire Ecologie des Hydrosystèmes Fluviaux, Université de Lyon 1 – Campus de La Doua, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne, France
C. MAAZOUZI
Affiliation:
UMR CNRS 5023 Laboratoire Ecologie des Hydrosystèmes Fluviaux, Université de Lyon 1 – Campus de La Doua, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne, France
L. SIMON
Affiliation:
UMR CNRS 5023 Laboratoire Ecologie des Hydrosystèmes Fluviaux, Université de Lyon 1 – Campus de La Doua, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne, France
J.-N. BEISEL
Affiliation:
UMR CNRS 7146 Laboratoire des Interactions Écotoxicologie, Biodiversité, Écosystèmes (LIEBE), Université Paul Verlaine, Metz – Campus Bridoux, Av du gal Delestraint 57070 Metz – Borny, France
*
*Corresponding author (present address): Université Pierre et Marie Curie, UMR 7625 Ecologie & Evolution, 7 Quai Saint Bernard, Bât. A, 7ème étage, Case 237, 75252 Paris Cedex 05, France. Tel: +33 (0) 1 44 27 25 69. E-mail: [email protected]

Summary

Trophically transmitted parasites are likely to strongly influence food web-structure. The extent to which they change the trophic ecology of their host remains nevertheless poorly investigated and field evidence is lacking. This is particularly true for acanthocephalan parasites whose invertebrate hosts can prey on other invertebrates and contribute to leaf-litter breakdown. We used a multiple approach combining feeding experiments, neutral lipids and stable isotopes to investigate the trophic ecology of the freshwater amphipod Gammarus roeseli parasitized by the bird acanthocephalan Polymorphus minutus. Infected compared to uninfected amphipods consumed as many dead isopods, but fewer live isopods and less leaf material. Infection had no influence on the total concentration of neutral lipids. Contrary to what we expected based on laboratory findings, the nitrogen isotope signature, which allows for the estimation of consumer's trophic position, was not influenced by infection status. Conversely, the carbon isotope signature, which is used to identify food sources, changed with infection and suggested that the diet of infected G. roeseli includes less perilithon (i.e. fixed algae on rocks, stones) but more terrestrial inputs (e.g. leaf material) than that of uninfected conspecifics. This study shows evidence of changes in the trophic ecology of P. minutus-infected G. roeseli and we stress the need to complement feeding experiments with field data when investigating top-down effects of infection in an opportunistic feeder which adapts its diet to the available food sources.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amundsen, P.-A., Lafferty, K. D., Knudsen, R., Primicerio, R., Klemetsen, A. and Kuris, A. M. (2009). Food web topology and parasites in the pelagic zone of a subarctic lake. Journal of Animal Ecology 78, 563572.CrossRefGoogle ScholarPubMed
Barnard, J. L. and Barnard, C. M. (1983). Freshwater Amphipoda of the World, I. Evolutionary Patterns and II. Handbook and Bibliography. Hayfield Associates, Mt Vernon, Virginia, USA.Google Scholar
Bauer, A., Haine, E. R., Perrot-Minnot, M.-J. and Rigaud, T. (2005). The acanthocephalan parasite Polymorphus minutus alters the geotactic and clinging behaviours of two sympatric amphipods hosts: the native Gammarus pulex and the invasive Gammarus roeseli. Journal of Zoology 267, 3943.CrossRefGoogle Scholar
Bearhop, S., Adams, C. E., Waldron, S., Fuller, R. A. and Macleod, H. (2004). Determining trophic niche width: a novel approach using stable isotope analysis. Ecology 73, 10071012.Google Scholar
Bollache, L., Gambade, G. and Cézilly, F. (2001). The effects of two acanthocephalan parasites, Pomphorhynchus laevis and Polymorphus minutus, on pairing success in male Gammarus pulex (Crustacea: Amphipoda). Behavioral Ecology and Sociobiology 49, 296303.CrossRefGoogle Scholar
Bollache, L., Rigaud, T. and Cézilly, F. (2002). Effects of two acanthocephalan parasites on the fecundity and pairing status of female Gammarus pulex (Crustacea: Amphipoda). Journal of Invertebrate Pathology 79, 102110.CrossRefGoogle ScholarPubMed
Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248254.CrossRefGoogle ScholarPubMed
Combes, C. (1991). Ethological aspects of parasite transmission. American Naturalist 138, 866880.CrossRefGoogle Scholar
Covich, A. P., Palmer, M. A. and Crowl, T. A. (1999). The role of benthic invertebrate species in freshwater ecosystems. BioScience 49, 119127.CrossRefGoogle Scholar
Crompton, D. W. T. (1970). An Ecological Approach to Acanthocephalan Physiology. Cambridge University Press, Cambridge, UK.Google Scholar
Dangles, O. and Malmqvist, B. (2004). Species richness-decomposition relationships depend on species dominance. Ecology Letters 7, 395402.CrossRefGoogle Scholar
De Niro, M. J. and Epstein, S. (1978). Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta 42, 495506.CrossRefGoogle Scholar
Dezfuli, B. S., Lui, A., Giovinazzo, G. and Giari, L. (2008). Effect of Acanthocephala infection on the reproductive potential of crustacean intermediate hosts. Journal of Invertebrate Pathology 98, 116119.CrossRefGoogle ScholarPubMed
Dick, J. T. A., Armstrong, M., Clarke, H. C., Farnsworth, K. D., Hatcher, M., Ennis, M., Kelly, A. and Dunn, A. M. (2010). Parasitism may enhance rather than reduce the predatory impact of an invader. Biology Letters (in the Press). doi:10.1098/rsbl.2010.017lCrossRefGoogle ScholarPubMed
Dick, J. T. A. and Platvoet, D. (1996). Intraguild predation and species exclusions in amphipods: the interaction of behaviour, physiology and environment. Freshwater Biology 36, 375383.CrossRefGoogle Scholar
Dick, J. T. A. and Platvoet, D. (2000). Invading predatory crustacean Dikerogammarus villosus eliminates both native and exotic species. Proceedings of the Royal Society of London, B 267, 977983.CrossRefGoogle ScholarPubMed
Falk-Petersen, S., Sragent, J. R., Kwasniewski, S., Gulliksen, B. and Millar, R. M. (2001). Lipids and fatty acids in Clione limanica and Limanica helicina in Svalbard waters and the Arctic ocean: trophic implications. Polar Biology 24, 163170.CrossRefGoogle Scholar
Fielding, N. J., MacNeil, C., Elwood, R. W., Riddell, G. E. and Dunn, A. M. (2003). Effects of the acanthocephalan parasite Echinorhynchus truttae on the feeding ecology of Gammarus pulex (Crustacea: Amphipoda). Journal of Zoology 261, 321325.CrossRefGoogle Scholar
Folch, J., Lees, M. and Stanley, G. H. S. (1957). A simple method for the isolation and purification of total lipids from animal tissues. The Journal of Biological Chemistry 226, 497509.CrossRefGoogle ScholarPubMed
France, R. L. (1996). Absence or masking of metabolic fractionations of 13C in a freshwater benthic food web. Freshwater Biology 36, 16.CrossRefGoogle Scholar
Fraser, A. J., Sargent, J. R., Gamble, J. C. and MacLachlan, P. (1987). Lipid class and fatty acid composition as indicators of the nutritional condition of larval Atlantic herring. American Fisheries Society Symposium 2, 143151.Google Scholar
Hernandez, A. D. and Sukhdeo, M. V. K. (2008 a). Parasite effects on isopod feeding rates can alter the host's functional role in a natural stream ecosystem. International Journal for Parasitology 38, 683690.CrossRefGoogle Scholar
Hernandez, A. D. and Sukhdeo, M. V. K. (2008 b). Parasites alter the topology of a stream food web across seasons. Oecologia 156, 613624.CrossRefGoogle ScholarPubMed
Holmes, J. C. and Bethel, W. M. (1972). Modification of intermediate host behaviour by parasites. In Behavioural Aspects of Parasite Transmission (ed. Canning, E. U. and Wright, C. A.), pp. 123149. Academic Press, London, UK.Google Scholar
Karaman, G. S. and Pinkster, S. (1977). Freshwater Gammarus species from Europe, North Africa and adjacent regions of Asia (Crustacea-Amphipoda) Part II. Gammarus roeseli-group and related species. Bijdragen tot de Dierkunde 47, 165196.CrossRefGoogle Scholar
Kelly, D. W., Bailey, R. J., MacNeil, C., Dick, J. T. A. and McDonald, R. A. (2006). Invasion by the amphipod Gammarus pulex alters community composition of native freshwater macroinvertebrates. Diversity and Distribution 12, 525534.CrossRefGoogle Scholar
Kelly, D. W., Dick, J. T. A. and Montgomery, W. I. (2002 a). The functional role of Gammarus (Crustacea, Amphipoda): shredders, predators, or both? Hydrobiologia 485, 199203.CrossRefGoogle Scholar
Kelly, D. W., Dick, J. T. A. and Montgomery, W. I. (2002 b). Predation on mayfly nymph, Baetis rhodani, by native and introduced Gammarus: direct effects and the facilitation of predation by salmonids. Freshwater Biology 47, 12571268.CrossRefGoogle Scholar
Kelly, D. W., Dick, J. T. A., Montgomery, W. I. and MacNeil, C. (2003). Differences in composition of macroinvertebrates communities with invasive and native Gammarus spp. (Crustacea: Amphipoda). Freshwater Biology 48, 306315.CrossRefGoogle Scholar
Kennedy, C. R. (2006). Ecology of the Acanthocephala. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Lafferty, K. D., Dobson, A. P. and Kuris, A. M. (2006). Parasites dominate food web links. Proceedings of the National Academy of Sciences, USA 103, 1121111216.CrossRefGoogle ScholarPubMed
Lafferty, K. D., Allesina, S., Arim, M., Briggs, C. J., De Leo, G., Dobson, A. P., Dunne, J. A., Johnson, P. T. J., Kuris, A. M., Marcogliese, D. J., Martinez, N. D., Memmott, J., Marquet, P. A., McLaughlin, J. P., Mordecai, E. A., Pascual, M., Poulin, R. and Thieltges, D. W. (2008). Parasites in food webs: the ultimate missing links. Ecology Letters 11, 533546.CrossRefGoogle ScholarPubMed
Lefèvre, T., Lebarbenchon, C., Gauthier-Clerc, M., Missé, D., Poulin, R. and Thomas, F. (2008). The ecological significance of manipulative parasites. Trends in Ecology and Evolution 24, 4148.CrossRefGoogle ScholarPubMed
Maazouzi, C., Piscart, C., Pihan, J.-C. and Masson, G. (2009). Effect of habitat-related resources on fatty acid composition and body weight of the invasive Dikerogammarus villosus in an artificial reservoir. Fundamental and Applied Limnology 175, 327338.CrossRefGoogle Scholar
MacNeil, C., Dick, J. T. A. and Elwood, R. W. (1997). The trophic ecology of freshwater Gammarus spp. (Crustacea: Amphipoda): problems and perspectives concerning the functional feeding group concept. Biological Reviews 72, 349364.Google Scholar
MacNeil, C., Fielding, N. J., Dick, J. T. A., Briffa, M., Prenter, J., Hatcher, M. J. and Dunn, A. M. (2003). An acanthocephalan parasite mediates intraguild predation between invasive and native freshwater amphipods (Crustacea). Freshwater Biology 48, 20852093.CrossRefGoogle Scholar
Marcogliese, D. J. (2004). Parasites: small players with crucial roles in the ecological theatre. EcoHealth 1, 151164.CrossRefGoogle Scholar
Marriott, D. R., Collins, M. L., Paris, R. M., Gudgin, D. R., Barnard, C. J., McGregor, P. K., Gilbert, F. S., Hartley, J. C. and Behnke, J. M. (1989). Behavioral modifications and increased predation risk of Gammarus pulex infected with Polymorphus minutus. Journal of Biological Education 23, 135141.CrossRefGoogle Scholar
May, R. M. (1992). How many species inhabit the earth? Scientific American 267, 4248.CrossRefGoogle Scholar
McCahon, C. P., Brown, A. F. and Pascoe, D. (1988). The effect of the acanthocephalan Pomphorhynchus laevis (Müller 1776) on the acute toxixity of cadmium to its intermediate host, the amphipod Gammarus pulex (L.). Archives of Environmental Contamination Toxicology 17, 239243.CrossRefGoogle Scholar
Médoc, V. and Beisel, J.-N. (2008). An acanthocephalan parasite boosts the escape performance of its intermediate host facing non-host predators. Parasitology 135, 977984.CrossRefGoogle ScholarPubMed
Médoc, V. and Beisel, J.-N. (2009). Field evidence for non-host predator avoidance in a manipulated amphipod. Natürwissenschaften 96, 513523.CrossRefGoogle Scholar
Médoc, V., Bollache, L. and Beisel, J.-N. (2006). Host manipulation of a freshwater crustacean (Gammarus roeseli) by an acanthocephalan parasite (Polymorphus minutus) in a biological invasion context. International Journal for Parasitology 36, 13511358.CrossRefGoogle Scholar
Médoc, V., Rigaud, T., Bollache, L. and Beisel, J.-N. (2009). A manipulative parasite increasing an antipredator response decreases its vulnerability to a nonhost predator. Animal Behaviour 77, 12351241.CrossRefGoogle Scholar
Minigawa, M. and Wada, E. (1984). Stepwise enrichment of 15N along food chains: further evidence and the relation between δ 15N and animal age. Geochimica and Cosmochimica Acta 40, 309312.Google Scholar
Moore, J. (2002). Parasites and the Behavior of Animals. Oxford University Press, New York, NY, USA.CrossRefGoogle Scholar
Napolitano, G. E. and Ackman, R. G. (1989). Lipids and hydrocarbons in Corophium volutator from Minas Basin, Nova Scotia. Marine Biology 100, 333338.CrossRefGoogle Scholar
Pascoe, D., Kedwards, T. J., Blockwell, S. J. and Taylor, E. J. (1995). Gammarus pulex (L.) feeding bioassay – effects of parasitism. Bulletin of Environmental Contamination and Toxicology 55, 629632.CrossRefGoogle ScholarPubMed
Peterson, B. J. and Fry, B. (1987). Stable isotopes in ecosystem studies. Annual Review of Ecology, Evolution, and Systematics 18, 293320.CrossRefGoogle Scholar
Perrot-Minnot, M.-J. and Cézilly, F. (2009). Parasites and behaviour. In Ecology and Evolution of Parasitism (ed. Thomas, F., Guégan, J.-F. and Renaud, F.), pp. 4968. Oxford University Press, New York, NY, USA.Google Scholar
Phillips, D. L. (2001). Mixing models in analyses of diet using multiple stable isotopes: a critique. Oecologia 127, 166170.CrossRefGoogle Scholar
Phillips, D. L. and Gregg, J. W. (2001). Uncertainty in source partitioning using stable isotopes. Oecologia 127, 171179.CrossRefGoogle ScholarPubMed
Phillips, D. L. and Gregg, J. W. (2003). Source partitioning using stable isotopes: coping with too many sources. Oecologia 136, 261269.CrossRefGoogle ScholarPubMed
Phillips, D. L., Newsome, S. D. and Gregg, J. W. (2005). Combining sources in stable isotope mixing models: alternative methods. Oecologia 144, 520527.CrossRefGoogle ScholarPubMed
Piscart, C., Webb, D. and Beisel, J.-N. (2007). The acanthocephalan parasite Polymorphus minutus increases the salinity tolerance of its intermediate host, the freshwater amphipod Gammarus roeseli (Crustacea: Gammaridae). Natürwissenschaften 94, 741747.CrossRefGoogle ScholarPubMed
Piscart, C., Dick, J. T. A., McCrisken, D. and MacNeil, C. (2009 a). Environmental mediation of intraguild predation between the freshwater invader Gammarus pulex and the native G. duebeni celticus. Biological Invasions 11, 21412145.CrossRefGoogle Scholar
Piscart, C., Genoel, R., Dolédec, S., Chauvet, E. and Marmonier, P. (2009 b). Effects of intense agricultural practices on heterotrophic processes in streams. Environmental Pollution 157, 10111018.CrossRefGoogle ScholarPubMed
Plaistow, S. J., Troussard, J. P. and Cézilly, F. (2001). The effect of the acanthocephalan parasite Pomphorhynchus laevis on the lipid and glycogen content of its intermediate host Gammarus pulex. International Journal for Parasitology 31, 346351.CrossRefGoogle ScholarPubMed
Post, D. M. (2002). Using stable isotopes to estimate trophic position: models, methods and assumptions. Ecology 83, 703718.CrossRefGoogle Scholar
Poulin, R. and Morand, S. (2000). The diversity of parasites. The Quarterly Review of Biology 75, 277293.CrossRefGoogle ScholarPubMed
Sures, B. and Radszuweit, H. (2007). Pollution-induced heat shock protein in the amphipod Gammarus roeseli is affected by larvae of Polymorphus minutus (Acanthocephala). Journal of Helminthology 81, 191197.CrossRefGoogle ScholarPubMed
Thompson, J. N. (1994). The Coevolutionary Process. The University of Chicago Press, Chicago, IL, USA.CrossRefGoogle Scholar
Thompson, R. M., Mouritsen, K. N. and Poulin, R. (2005). Importance of parasites and their life cycle characteristics in determining the structure of a large marine food web. Journal of Animal Ecology 74, 7785.CrossRefGoogle Scholar
Vanderklif, M. A. and Ponsard, S. (2003). Sources of variation in consumer-diet δ15N enrichment: a meta-analysis. Oecologia 136, 169182.CrossRefGoogle Scholar
Wallace, J. B. and Webster, J. R. (1996). The role of macroinvertebrates in stream ecosystem function. Annual Review of Entomology 41, 115139.CrossRefGoogle ScholarPubMed
Windsor, D. A. (1998). Most of the species on Earth are parasites. International Journal for Parasitology 28, 19391941.CrossRefGoogle ScholarPubMed