Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T07:33:43.673Z Has data issue: false hasContentIssue false

Parasite dynamics in an invaded ecosystem: helminth communities of native wood mice are impacted by the invasive bank vole

Published online by Cambridge University Press:  27 June 2017

KAREN C. LOXTON*
Affiliation:
Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
COLIN LAWTON
Affiliation:
Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
PETER STAFFORD
Affiliation:
Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
CELIA V. HOLLAND
Affiliation:
Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
*
*Corresponding author: Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland. E-mail: [email protected]

Summary

It is becoming increasingly evident that biological invasions result in altered disease dynamics in invaded ecosystems, with knock-on effects for native host communities. We investigated disease dynamics in an invaded ecosystem, using the helminth communities of the native wood mouse (Apodemus sylvaticus) in the presence and absence of the invasive bank vole (Myodes glareolus) in Ireland. Native wood mice were collected over 2 years from four sites to assess the impact of the presence of the bank vole on wood mouse helminth community dynamics both at the component and infracommunity level. We found evidence for dilution (Syphacia stroma), spill-back (Aonchotheca murissylvatici) and spill-over (Taenia martis) in native wood mice due to the presence of the bank vole. Site of capture was the most important factor affecting helminth community structure of wood mice, along with year of capture and host-age and the interactions between them.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abu-Madi, M. A., Behnke, J. M., Lewis, J. W. and Gilbert, F. S. (1998). Descriptive epidemiology of Heligmosomoides polygyrus in Apodemus sylvaticus from three contrasting habitats in south-east England. Journal of Helminthology 72, 93100.CrossRefGoogle Scholar
Abu-Madi, M. A., Behnke, J. M., Lewis, J. W. and Gilbert, F. S. (2000). Seasonal and site specific variation in the component community structure of intestinal helminths in Apodemus sylvaticus from three contrasting habitats in south-east England. Journal of Helminthology 74, 716.Google Scholar
Anderson, R. C. (2000). Nematode Parasites of Vertebrates, 2nd Edn. CABI Publishing, Wallingford, UK.CrossRefGoogle Scholar
Barnard, C. J., Kulis, K., Behnke, J. M., Bajer, A., Gromadzka-Ostrowska, J., Stachon, M. and Sinski, E. (2003). Local variation in helminth burdens of bank voles (Clethrionomys glareolus) from ecologically similar sites: temporal stability and relationships with hormone concentrations and social behaviour. Journal of Helminthology 77, 185195.CrossRefGoogle ScholarPubMed
Begon, M., Hazel, S. M., Baxby, D., Bown, K., Cavanagh, R., Chantrey, J., Jones, T. and Bennett, M. (1999). Transmission dynamics of a zoonotic pathogen within and between wildlife host species. Proceedings of the Royal Society of London. Series B: Biological Sciences 266, 19391945.Google Scholar
Behnke, J. M., Ali, N. M. and Jenkins, S. N. (1984). Survival to patency of low level infections with Trichuris muris in mice concurrently infected with Nematospiroides dubius . Annals of Tropical Medicine and Parasitology 78, 509517.Google Scholar
Behnke, J. M., Lewis, J. W., Zain, S. N. and Gilbert, F. S. (1999). Helminth infections in Apodemus sylvaticus in southern England: interactive effects of host age, sex and year on the prevalence and abundance of infections. Journal of Helminthology 73, 3144.Google Scholar
Behnke, J. M., Barnard, C. J., Bajer, A., Bray, D., Dinmore, J., Frake, K., Osmond, J., Race, T. and Sinski, E. (2001). Variation in the helminth community structure in bank voles (Clethrionomys glareolus) from three comparable localities in the Mazury Lake District region of Poland. Parasitology 123, 401414.CrossRefGoogle ScholarPubMed
Behnke, J. M., Bajer, A., Harris, P. D., Newington, L., Pidgeon, E., Rowlands, G., Sheriff, C., Kuliś-Malkowska, K., Siński, E., Gilbert, F. S. and Barnard, C. J. (2008). Temporal and between-site variation in helminth communities of bank voles (Myodes glareolus) from NE Poland. 2. The infracommunity level. Parasitology 135, 9991018.CrossRefGoogle ScholarPubMed
Behnke, J. M., Stewart, A., Bajer, A., Grzybek, M., Harris, P. D., Lowe, A., Ribas, A., Smales, L. and Vandegrift, K. J. (2015). Bank voles (Myodes glareolus) and house mice (Mus musculus; M. m. domesticus) in Europe are each parasitized by their own distinct species of Aspiculuris (Nematoda, Oxyurida). Parasitology 142, 14931505.CrossRefGoogle Scholar
Bjelić-Čabrilo, O. N., Popović, E. J., Šimić, S. D. and Kostić, D. S. (2009). Nematofauna of bank vole: Clethrionomys glareolus (Schreber, 1780) from Mt. Fruška gora (Serbia). Archives of Biological Sciences 61, 555561.CrossRefGoogle Scholar
Bryant, V. (1973). The life cycle of Nematospiroides dubius, Baylis, 1926 (Nematoda: Heligmosomidae). Journal of Helminthology 47, 263268.Google Scholar
Bush, A. O., Lafferty, K. D., Lotz, J. M. and Shostak, A. W. (1997). Parasitology meets ecology on its own terms: Margolis, et al. revisited. Journal of Parasitology 83, 575583.CrossRefGoogle Scholar
Butet, A. and Delettre, Y. R. (2011). Diet differentiation between European arvicoline and murine rodents. Acta Theriologica 56, 297304.Google Scholar
Chervy, L. (2002). The terminology of larval cestodes or metacestodes. Systematic Parasitology 52, 133.CrossRefGoogle Scholar
Claassens, A. J. M. and O'Gorman, F. (1965). The bank vole, Clethrionomys glareolus Schreber: a mammal new to Ireland. Nature 205, 923924.Google Scholar
Dobson, A. (2004). Population dynamics of pathogens with multiple host species. American Naturalist 164, 6478.Google Scholar
Eira, C., Torres, J., Vingada, J. and Miquel, J. (2006). Ecological aspects influencing the helminth community of the wood mouse Apodemus sylvaticus in Dunas de Mira, Portugal. Acta Parasitologica 51, 300308.Google Scholar
Fahmy, M. A. M. (1956). An investigation on the life cycle of Nematospiroides dubius (Nematoda: Heligmosomidae) with special reference to the free-living stages. Parasitology Research 17, 394399.Google Scholar
Fairley, J. S. (1985). Bank vole in county Galway. Irish Naturalists Journal 21, 544544.Google Scholar
Fuentes, M. V., Sáez, S., Trelis, M., Galán-Puchades, M. T. and Esteban, J. G. (2004). The helminth community of the wood mouse, Apodemus sylvaticus, in the Sierra Espuna, Murcia, Spain. Journal of Helminthology 78, 219223.Google Scholar
Grzybek, M., Bajer, A., Bednarsk, M., Al-Sarraf, M., Behnke-Borowczyk, J., Harris, P. D., Price, S. J., Brown, G. S., Osborne, S. J., Siński, E. and Behnke, J. M. (2015). Long-term spatiotemporal stability and dynamic changes in helminth infracommunities of bank voles (Myodes glareolus) in NE Poland. Parasitology 142, 17221743.Google Scholar
Harvey, L. A. and Channon, C. E. (1956). On Corrigia (Orthorchis) vitta (Duj.1845). Parasitology 46, 101106.Google Scholar
Haukisalmi, V. and Henttonen, H. (1990). The impact of climatic factors and host density on the long-term population dynamics of vole helminths. Oecologia 83, 309315.Google Scholar
Hurníková, Z., Kołodziej-Sobocińska, M., Dvorožňáková, E., Niemczynowicz, A. and Zalewski, A. (2016). An invasive species as an additional parasite reservoir: Trichinella in introduced American mink (Neovisonvison). Veterinary Parasitology 231, 106109.Google Scholar
Johnson, P. T. J. and Thieltges, D. W. (2010). Diversity, decoys and the dilution effect: how ecological communities affect disease risk. Journal of Experimental Biology 213, 961970.CrossRefGoogle ScholarPubMed
Jovani, R. and Tella, J. L. (2006). Parasite prevalence and sample size: misconceptions and solutions. Trends in Parasitology 22, 214218.CrossRefGoogle ScholarPubMed
Justine, J. L. and de Roguin, L. (1990). Capillaria murissylvatici (Nematoda, Capillariinae), parasite d'un Rongeur du Baluchistan iranien. Bulletin du Muséum National d'Histoire Naturelle (A) 12, 1933.Google Scholar
Keesing, F., Holt, R. D. and Ostfeld, R. S. (2006). Effects of species diversity on disease risk. Ecology Letters, 9, 485498.Google Scholar
Kelly, D. W., Patterson, R. A., Townsand, C. R., Poulin, R. and Tompkins, D. M. (2009). Has the introduction of brown trout altered disease patterns in native New Zealand fish? Freshwater Biology 54, 18051818.CrossRefGoogle Scholar
Kennedy, C. R. and Hartvigsen, R. A. (2000). Richness and diversity of intestinal metazoan communities in brown trout Salmo trutta compared to those of eels Anguilla anguilla in their European heartlands. Parasitology 121, 5564.Google Scholar
Khalil, L. F., Jones, A. and Bray, R. A. (1994). Keys to the Cestode Parasites of Vertebrates. CAB International, London, UK.Google Scholar
Kikkawa, J. (1964). Movement, activity and distribution of the small rodents Clethrionomys glareolus and Apodemus sylvaticus in woodland. Journal of Animal Ecology 33, 259299.CrossRefGoogle Scholar
Langley, R. and Fairley, J. S. (1982). Seasonal variations in infestations of parasites in a wood mouse Apodemus sylvaticus population in the west of Ireland. Journal of Zoology 198, 249261.Google Scholar
Lewis, J. W. (1968). Studies on the helminth parasites of the Long-tailed field mouse, Apodemus sylvaticus sylvaticus from Wales. Journal of Zoology 154, 287312.Google Scholar
Loos-Frank, B. (2000). An up-date of Verster's (1969) Taxonomic revision of the genus Taenia Linnaeus’ (Cestoda) in table format. Systematic Parasitology 45, 155184.CrossRefGoogle Scholar
Loxton, K. C., Lawton, C., Stafford, P. and Holland, C. V. (2016). Reduced helminth parasitism in the introduced bank vole (Myodes glareolus): more parasites lost than gained. International Journal for Parasitology: Parasites and Wildlife 5, 175183.Google Scholar
Lymbery, A. J., Morine, M., Kanani, H. G., Beatty, S. J. and Morgan, D. L. (2014). Co-invaders: the effects of alien parasites on native hosts. International Journal for Parasitology: Parasites and Wildlife 3, 171177.Google ScholarPubMed
Manga-González, M. Y., González -Lanza, C., Cabanas, E. and Campo, R. (2001). Contributions to and review of dicrocoeliosis, with special reference to the intermediate hosts of Dicrocoelium dendriticum . Parasitology, 123, 91114.Google Scholar
Marnell, F., Kingston, N. and Looney, D. (2009). Ireland Red List No. 3: Terrestrial Mammals. National Parks and Wildlife Service, Department of the Environment, Heritage and Local Government, Dublin, Ireland.Google Scholar
McHugh, M. and Lawton, C. (2005). Bank vole Clethrionomys glareolus, Schreber in Galway. Irish Naturalists Journal 28, 8383.Google Scholar
Milazzo, C., Gouy de Belloq, J., Cagnin, M., Casanova, C., Feliu, C., Fons, R., Morand, S. and Santalla, F. (2003). Helminths and ectoparasites of Rattus rattus and Mus musculus from Sicily, Italy. Agriculture, Ecosystems and Environment 74, 323342.Google Scholar
Montgomery, S. S. J. and Montgomery, W. I. (1988). Cyclic and non-cyclic dynamics in populations of the helminth parasites of wood mice, Apodemus sylvaticus . Journal of Helminthology 62, 7890.Google Scholar
Montgomery, S. S. J. and Montgomery, W. I. (1989). Spatial and temporal variation in the infracommunity structure of helminths of Apodemus sylvaticus (Rodentia: Muridae). Parasitology 98, 145150.CrossRefGoogle ScholarPubMed
Montgomery, S. S. J. and Montgomery, W. I. (1990). Structure, stability and species interactions in helminth communities of wood mice Apodemus sylvaticus . International Journal for Parasitology 20, 225242.CrossRefGoogle ScholarPubMed
Montgomery, S. S. J., Montgomery, W. I. and Dunn, T. S. (1987). Biochemical, physiological and morphological variation in unarmed hymenolepids (Eucestoda: Cyclophyllidae). Zoological Journal of the Linnean Society 91, 293324.Google Scholar
Montgomery, W. I., Lundy, M. G. and Reid, N. (2012). ‘Invasional meltdown’: evidence for unexpected consequences and cumulative impacts of multispecies invasions. Biological Invasions 14, 11111125.Google Scholar
Morley, N. J. and Lewis, J. W. (2008). The influence of climatic conditions on long-term changes in the helminth fauna of terrestrial molluscs and the implications for parasite transmission in southern England. Journal of helminthology 82, 325335.CrossRefGoogle ScholarPubMed
Moss, R., Watson, A., Trenholm, I. B. and Parr, R. (1993). Caecal threadworms Trichostrongylus tenuis in red grouse Lagopus lagopus scoticus: effects of weather and host density upon estimated worm burdens. Parasitology 107, 199209.Google Scholar
Müller-Graf, C. D. M., Durand, P., Feliu, C., Hugot, J. P., O'Callaghan, C. J., Renaud, F., Santalla, F. and Morand, S. (1999). Epidemiology and genetic variability of two species of nematodes (Heligmosomoides polygyrus and Syphacia stroma) of Apodemus spp . Parasitology 118, 425432.Google Scholar
O'Hara, R. B. and Kotze, D. J. (2010). Do not log-transform count data. Methods in Ecology and Evolution 1, 118122.CrossRefGoogle Scholar
Ostfeld, R. S. and Keesing, F. (2000). Biodiversity and disease risk: the case of Lyme disease. Conservation Biology 14, 722728.Google Scholar
O'Sullivan, H. M., Small, C. M. and Fairley, J. S. (1984). A study of parasitic infestations in populations of small rodents (Apodemus sylvaticus and Clethrionomys glareolus) on Ross Island, Killarney. Journal of Life Sciences Royal Dublin Society 5, 2942.Google Scholar
Patz, J. A., Graczyk, T. K., Geller, N. and Vittor, A. Y. (2000). Effects of environmental change on emerging parasitic diseases. International Journal for Parasitology 30, 3951405.CrossRefGoogle ScholarPubMed
Pielou, E. C. (1966). The measurement of diversity in different types of biological collections. Journal of Theoretical Biology 13, 131144.CrossRefGoogle Scholar
Pisanu, B., Lebailleux, L. and Chapuis, J. L. (2009). Why do Siberian chipmunks Tamias sibiricus (Sciuridae) introduced in French forests acquired so few intestinal helminth species from native sympatric Murids?. Parasitology Research 104, 709714.Google Scholar
R Development Core Team. (2010). R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.Google Scholar
Rudolf, V. H. and Antonovics, J. (2005). Species coexistence and pathogens with frequency-dependent transmission. American Naturalist 166, 112118.Google Scholar
Scherer, R. (2010). PropCIs. R package version 0·1–7. http://CRAN.R-project.org/package¼PropCIs.Google Scholar
Stuart, P., Mirimin, L., Cross, T. F., Sleeman, D. P., Buckley, N. J., Telfer, S., Birtles, R. J., Kotlik, P. and Searle, J. B. (2007). The origin of Irish bank voles Clethrionomys glareolus assessed by mitochondrial DNA analysis. Irish Naturalists Journal 28, 440446.Google Scholar
Taffs, L. F. (1976). Pinworm infections in laboratory rodents: a review. Laboratory Animals 10, 113.CrossRefGoogle ScholarPubMed
Telfer, S. and Bown, K. (2012). The effects of invasion on parasite dynamics and communities. Functional Ecology 26, 12881299.Google Scholar
Telfer, S., Bown, K. J., Sekules, R., Begon, M., Hayden, T. and Birtles, R. (2005). Disruption of a host-parasite system following the introduction of an exotic host species. Parasitology 130, 661668.CrossRefGoogle ScholarPubMed
Tenora, F., Henttonen, H. and Haukisalmi, V. (1983). On helminths of rodents in Finland. Ann. Z001. Fennici 20, 3745.Google Scholar
Tompkins, D. M., Draycott, R. A. H. and Hudson, P. J. (2000). Field evidence for apparent competition mediated via the shared parasites of two game bird species. Ecology Letters 3, 1014.Google Scholar
Tompkins, D. M., Sainsbury, A. W., Nettleton, P., Buxton, D. and Gurnell, J. (2002). Parapoxvirus causes a deleterious disease in red squirrels associated with UK population declines. Proceedings of the Royal Society of London. Series B: Biological Sciences 269, 529533.Google Scholar
Tompkins, D. M., White, A. R. and Boots, M. (2003). Ecological replacement of native red squirrels by invasive greys driven by disease. Ecological Letters 6, 189196.CrossRefGoogle Scholar
Van Riper, C., Van Riper, S. G. and Hansen, W. R. (2002). Epizootiology and effect of avian pox on Hawaiian forest birds. Auk 119, 929942.Google Scholar
Venables, W. N. and Ripley, B. D. (2002). Modern Applied Statistics using S, 4th Edn. Springer, New York.Google Scholar
Watts, C. H. (1968). The foods eaten by wood mice (Apodemus sylvaticus) and bank voles (Clethrionomys glareolus) in Wytham Woods, Berkshire. Journal of Animal Ecology 37, 2541.Google Scholar
White, T. A., Lundy, M. G., Montgomery, W. I., Montgomery, S., Perkins, S. E., Lawton, C., Meehan, J. M., Hayden, T. J., Heckel, G., Reid, N. and Searle, J. B. (2012). Range expansion in an invasive small mammal: influence of life-history and habitat quality. Biological Invasions 14, 22032215.Google Scholar
Wilson, K. and Grenfell, B. T. (1997). Generalized linear modelling for parasitologists. Parasitology Today 13, 3338.Google Scholar
Supplementary material: File

Loxton supplementary material

Tables 1-2

Download Loxton supplementary material(File)
File 29.9 KB