Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-05T06:18:34.220Z Has data issue: false hasContentIssue false

Parasite development and host responses during the establishment of Trypanosoma brucei infection transmitted by tsetse fly

Published online by Cambridge University Press:  06 April 2009

J. D. Barry
Affiliation:
International Laboratory for Research on Animal Diseases (ILRAD), P.O. Box 30709, Nairobi, Kenya
D. L. Emery
Affiliation:
International Laboratory for Research on Animal Diseases (ILRAD), P.O. Box 30709, Nairobi, Kenya

Summary

Following inoculation of Trypanosoma brucei into large mammals by the tsetse fly a local skin reaction, the ‘chancre’, develops due to trypanosome proliferation. We have cannulated the afferent and efferent lymphatics of the draining lymph node in goats and examined the onset of a cellular reaction, the emigration of the parasite from the chancre and the development of both antigenic variation and the specific immune response. The chancre first became detectable by day 3 post-infection, peaked by day 6 and then subsided. Lymphocyte output increased 6- to 8-fold by day 10 and the number of lymphoblasts increased 50-fold in this period. Both then declined. Trypanosomes were detected in lymph 1–2 days before the chancre, peaked by days 5–6, declined during development of the chancre and then peaked again. The bloodstream population appeared by days 4–5 and displayed different kinetics from that in lymph. Recirculation of parasites through the lymphatics ensued. Lymph-borne trypanosome populations were highly pleomorphic. Parasites in lymph expressed firstly a mixture of the Variable Antigen Types (VATs) which are found characteristically in the tsetse fly, this being followed by a mixture of other VATs. The two groups overlapped in appearance. In the bloodstream the same sequence of events occurred although 2 or 3 days later. The specific antibody response, as measured by radioimmunoassay and agglutination, arose within a few days of the first detection of each VAT. Activities appeared first in the lymph and then in plasma.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barry, J. D. (1979). Capping of variable antigen on Trypanosoma brucei, and its immunological and biological implications. Journal of Cell Science 37, 287302.CrossRefGoogle Scholar
Barry, J. D. & Hajduk, S. L. (1979). Antigenic heterogeneity of bloodstream and metacyclic forms of Trypanosoma brucei. In Pathogenicity of Trypanosomes (ed. Losos, G. and Chouinard, A.), pp. 51–6. Ottawa: IDRC.Google Scholar
Barry, J. D., Hajduk, S. L., Vickerman, K. & Le Ray, D. (1979). Detection of multiple variable antigen types in metacyclic populations of Trypanosoma brucei. Transactions of the Royal Society of Tropical Medicine and Hygiene 73, 205–8.CrossRefGoogle ScholarPubMed
Capbern, A., Giroud, C., Baltz, T. & Mattern, P. (1977). Trypanosoma equiperdum: Étude des variations antigéniques au cours de la trypanosomose expérimentale du lapin. Experimental Parasitology 42, 613.CrossRefGoogle Scholar
Cross, G. A. M. (1975). Identification, purification and properties of clone-specific glycoprotein antigens constituting the surface coat of Trypanosoma brucei. Parasitology 71, 393417.CrossRefGoogle ScholarPubMed
Cunningham, M. P. & Vickerman, K. (1962). Antigenic analysis in the Trypanosoma brucei group using the agglutination reaction. Transactions of the Royal Society of Tropical Medicine and Hygiene 56, 4859.CrossRefGoogle ScholarPubMed
Doyle, J. J., Hirumi, H., Hirumi, K., Lupton, E. N. & Cross, G. A. M. (1980). Antigenic variation in clones of animal-infective Trypanosoma brucei derived and maintained in vitro. Parasitology 80, 359–69.CrossRefGoogle ScholarPubMed
Emery, D. L. & Moloo, S. K. (1980). The sequential cellular changes in the local skin reaction produced in goats by Glossina morsitans morsitans infected with Trypanosoma (Trypanozoon) brucei. Acta tropica 37, 137–49.Google ScholarPubMed
Emery, D. L., Barry, J. D. & Moloo, S. K. (1980). The appearance of Trypanosoma (Duttonella) vivax in lymph following challenge of goats with infected Glossina morsitans morsitans. Acta tropica 37, 375–9.Google ScholarPubMed
Esser, K. M., Schoenbechler, M. J. & Gingrich, J. B. (1982). Trypanosoma rhodesiense blood forms express all antigen specificities relevant to protection against metacyclic (insect form) challenge. Journal of Immunology 129, 1715–18.CrossRefGoogle ScholarPubMed
Goodwin, L. G. & Guy, M. W. (1973). Tissue fluids in rabbits infected with Trypanosoma (Trypanozoon) brucei. Parasitology 66, 499514.CrossRefGoogle ScholarPubMed
Gray, A. R. & Luckins, A. G. (1980). The initial stage of infection with cyclically-transmitted Trypanosoma congolense in rabbits, calves and sheep. Journal of Comparative Pathology 90, 499512.CrossRefGoogle ScholarPubMed
Hajduk, S. L. & Vickerman, K. (1981). Antigenic variation in cyclically transmitted Trypanosoma brucei. Variable antigen type composition of the first parasitaemia in mice bitten by trypanosome-infected Glossina morsitans. Parasitology 83, 609–21.CrossRefGoogle Scholar
Hajduk, S. L., Cameron, C. R., Barry, J. D. & Vickerman, K. (1981). Antigenic variation in cyclically transmitted Trypanosoma brucei. Variable antigen type composition of metacyclic trypanosome populations from the salivary glands of Glossina morsitans. Parasitology 83, 595607.CrossRefGoogle Scholar
Hall, J. G. (1967). A method for collecting lymph from the prefemoral node of unanaesthetised sheep. Quarterly Journal of Experimental Physiology 52, 200–5.CrossRefGoogle ScholarPubMed
Herbert, W. J., Parratt, D., Van Meirvenne, N. & Lennox, B. (1980). An accidental laboratory infection with trypanosomes of a defined stock. II. Studies on the serological response of the patient and the identity of the infecting organism. Journal of Infection. 2, 113–24.CrossRefGoogle ScholarPubMed
Hunter, W. M. (1973). Radioimmunoassay. In Handbook of Experimental Immunology (ed. Weir, D. M.), 2nd ed., pp. 17.117.36. Oxford: Blackwell Scientific Publications.Google Scholar
Lanham, S. W. & Godfrey, D. G. (1970). Isolation of salivarian trypanosomes from man and other mammals using DEAE-cellulose. Experimental Parasitology 28, 521–34.CrossRefGoogle ScholarPubMed
Luckins, A. G. & Gray, A. R. (1978). An extravascular site of development of Trypanosoma congolense. Nature, London 272, 613–14.CrossRefGoogle ScholarPubMed
Lumsden, W. H. R., Herbert, W. J. & McNeillage, G. J. C. (1973). Techniques with Trypanosomes. Edinburgh: Churchill Livingston.Google Scholar
McNeillage, G. J. C., Herbert, W. J. & Lumsden, W. H. R. (1969). Antigenic type of first relapse variants arising from a strain of Trypanosoma (Trypanozoon) brucei. Experimental Parasitology 25, 17.CrossRefGoogle ScholarPubMed
Minden, P. & Farr, R. S. (1973). The ammonium sulphate method to measure antigen-binding capacity. In Handbook of Experimental Immunology (ed. Weir, D. M.), 2nd ed., pp. 15.115.21. Oxford: Blackwell Scientific Publications.Google Scholar
Murray, M., Murray, P. K. & McIntyre, W. I. M. (1977). Improved parasitological technique for the diagnosis of African trypanosomiasis. Transactions of the Royal Society of Tropical Medicine and Hygiene 71, 325–6.CrossRefGoogle ScholarPubMed
Pearson, T. W., Pinder, M., Roelants, G. E., Kar, S. K., Lundin, L. B., Mayor-Withey, K. S. & Hewett, R. S. (1980). Methods for derivation and detection of anti-parasite monoclonal antibodies. Journal of Immunological Methods 34, 141–54.CrossRefGoogle ScholarPubMed
Seed, J. R. & Effron, H. G. (1973). Simultaneous presence of different antigenic populations of Trypanosoma brucei gambiense in Microtus montanus. Parasitology 66, 269–78.CrossRefGoogle ScholarPubMed
Ssenyonga, G. S. Z. & Adam, K. M. G. (1975). The number and morphology of trypanosomes in the blood and lymph of rats infected with Trypanosoma brucei and T. congolense. Parasitology 70, 255–61.CrossRefGoogle ScholarPubMed
Tanner, M., Jenni, L., Hecker, H. & Brun, R. (1980). Characterization of Trypanosoma brucei isolated from lymph nodes of rats. Parasitology 80, 383–91.CrossRefGoogle ScholarPubMed
Van Meirvenne, N., Janssens, P. G. & Magnus, E. (1975 a). Antigenic variation in syringe passaged populations of Trypanosoma (Trypanozoon) brucei. I. Rationalization of the experimental approach. Annales de la Société belge de Médecine tropicale 55, 123.Google ScholarPubMed
Van Meirvenne, N., Janssens, P. G., Magnus, E., Lumsden, W. H. R. & Herbert, W. J. (1975 b). Antigenic variation in syringe passaged populations of Trypanosoma (Trypanozoon) brucei. II. Comparative studies on two antigenic type collections. Annales de la Société belge de Médecine tropicale 55, 2530.Google ScholarPubMed
Vickerman, K. & Barry, J. D. (1982). African Trypanosomes. In Immunology of Parasitic Infections (ed. Cohen, S. and Warren, K.), pp. 204–60. Oxford: Blackwell Scientific Publications.Google Scholar
Wijers, D. J. B. (1959). Polymorphism in Trypanosoma gambiense and Trypanosoma rhodesiense, and the significance of the intermediate forms. Annals of Tropical Medicine and Parasitology 53, 5968.CrossRefGoogle ScholarPubMed
Willett, K. C. & Gordon, R. M. (1957). Studies on the deposition, migration and development to the blood forms of trypanosomes belonging to the Trypanosoma brucei group. II. Annals of Tropical Medicine and Parasitology 51, 471–92.CrossRefGoogle Scholar