Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-18T02:21:58.635Z Has data issue: false hasContentIssue false

Oxidative stress damage in the protozoan parasite Trypanosoma cruzi is inhibited by Cyclosporin A

Published online by Cambridge University Press:  31 March 2015

PATRICIA L. BUSTOS
Affiliation:
Instituto Nacional de Parasitología “Dr Mario Fatala Chabén”, A.N.L.I.S. Malbrán, Av. Paseo Colón 568, C1063AC S, Buenos Aires, Argentina
ALINA E. PERRONE
Affiliation:
Instituto Nacional de Parasitología “Dr Mario Fatala Chabén”, A.N.L.I.S. Malbrán, Av. Paseo Colón 568, C1063AC S, Buenos Aires, Argentina
NATALIA MILDUBERGER
Affiliation:
Instituto Nacional de Parasitología “Dr Mario Fatala Chabén”, A.N.L.I.S. Malbrán, Av. Paseo Colón 568, C1063AC S, Buenos Aires, Argentina CAECIHS, Universidad Abierta Interamericana, Av. Montes de Oca 745, 2° piso, C1270AAH, Buenos Aires, Argentina
MIRIAM POSTAN
Affiliation:
Instituto Nacional de Parasitología “Dr Mario Fatala Chabén”, A.N.L.I.S. Malbrán, Av. Paseo Colón 568, C1063AC S, Buenos Aires, Argentina
JACQUELINE BUA*
Affiliation:
Instituto Nacional de Parasitología “Dr Mario Fatala Chabén”, A.N.L.I.S. Malbrán, Av. Paseo Colón 568, C1063AC S, Buenos Aires, Argentina CAECIHS, Universidad Abierta Interamericana, Av. Montes de Oca 745, 2° piso, C1270AAH, Buenos Aires, Argentina
*
* Corresponding author. Instituto Nacional de Parasitología “Dr Mario Fatala Chabén”, A.N.L.I.S. Malbrán, Av. Paseo Colón 568, C1063ACS, Ciudad Autónoma de Buenos Aires, Argentina. E-mail: [email protected]

Summary

Cyclosporin A (CsA) specifically inhibits the mitochondrial permeability transition pore (mPTP). Opening of the mPTP, which is triggered by high levels of matrix [Ca2+] and/or oxidative stress, leads to mitochondrial dysfunction and thus to cell death by either apoptosis or necrosis. In the present study, we analysed the response of Trypanosoma cruzi epimastigote parasites to oxidative stress with 5 mm H2O2, by studying several features related to programmed cell death and the effects of pre-incubation with 1 μ m of CsA. We evaluated TcPARP cleavage, DNA integrity, cytochrome c translocation, Annexin V/propidium iodide staining, reactive oxygen species production. CsA prevented parasite oxidative stress damage as it significantly inhibited DNA degradation, cytochrome c translocation to cytosol and TcPARP cleavage. The calcein-AM/CoCl2 assay, used as a selective indicator of mPTP opening in mammals, was also performed in T. cruzi parasites. H2O2 treatment decreased calcein fluorescence, but this decline was partially inhibited by pre-incubation with CsA. Our results encourage further studies to investigate if there is a mPTP-like pore and a mitochondrial cyclophilin involved in this protozoan parasite.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ameisen, J. C., Idziorek, T., Billaut-Mulot, O., Loyens, M., Tissier, J. P. and Potentier, A. (1995). Apoptosis in a unicellular eukaryote (Trypanosoma cruzi): implications for the evolutionary origin and role of programmed cell death in the control of cell proliferation, differentiation and survival. Cell Death and Differentiation 2, 285300.Google Scholar
Bua, J., Fichera, L. E., Fuchs, A. G., Potenza, M., Dubin, M., Wenger, R. O., Moretti, G., Scabone, C. M. and Ruiz, A. M. (2008). Anti-Trypanosoma cruzi effects of cyclosporin A derivatives: possible role of a P-glycoprotein and parasite cyclophilins. Parasitology 135, 217228.Google Scholar
Cannata, J. J. and Cazzulo, J. J. (1984). Glycosomal and mitochondrial malate dehydrogenases in epimastigotes of Trypanosoma cruzi . Molecular and Biochemical Parasitology 11, 3749.Google Scholar
Connern, C. P. and Halestrap, A. P. (1994). Recruitment of mitochondrial cyclophilin to the mitochondrial inner membrane under conditions of oxidative stress that enhance the opening of a calcium-sensitive non-specific channel. Biochemical Journal 302, 321324.Google Scholar
Crompton, M., Virji, S., Doyle, V., Johnson, N. and Ward, J. M. (1999). The mitochondrial permeability transition pore. Biochemical Society Symposia 66, 167179.Google Scholar
Das, M., Mukherjee, S. B. and Shaha, C. (2001). Hydrogen peroxide induces apoptosis-like death in Leishmania donovani promastigotes. Journal of Cell Science 114(Pt 13), 24612469.CrossRefGoogle ScholarPubMed
Duszenko, M., Figarella, K., Macleod, E. T. and Welburn, S. C. (2006). Death of a trypanosome: a selfish altruism. Trends in Parasitology 22, 536542.Google Scholar
Fernández Villamil, S. H., Baltanás, R., Alonso, G. D., Vilchez Larrea, S. C., Torres, H. N. and Flawiá, M. M. (2008). TcPARP: a DNA damage-dependent poly(ADP-ribose) polymerase from Trypanosoma cruzi . International Journal for Parasitology 38, 277287.CrossRefGoogle ScholarPubMed
Figarella, K., Rawer, M., Uzcategui, N. L., Kubata, B. K., Lauber, K. and Madeo, F. (2005). Prostaglandin D2 induces programmed cell death in Trypanosoma brucei bloodstream form. Cell Death and Differentiation 12, 335346.Google Scholar
Figarella, K., Uzcategui, N. L., Beck, A., Schoenfeld, C., Kubata, B. K. and Lang, F. (2006). Prostaglandin-induced programmed cell death in Trypanosoma brucei involves oxidative stress. Cell Death and Differentiation 13, 18021814.CrossRefGoogle ScholarPubMed
Figueira, T. R., Barros, M. H., Camargo, A. A., Castilho, R. F., Ferreira, J. C., Kowaltowski, A. J., Sluse, F. E., Souza-Pinto, N. C. and Vercesi, A. E. (2013). Mitochondria as a source of reactive oxygen and nitrogen species: from molecular mechanisms to human health. Antioxidants and Redox Signaling 18, 20292074.Google Scholar
Friberg, H., Ferrand-Drake, M., Bengtsson, F., Halestrap, A. P. and Wieloch, T. (1998). Cyclosporin A, but not FK 506, protects mitochondria and neurons against hypoglycemic damage and implicates the mitochondrial permeability transition in cell death. Journal of Neuroscience 18, 51515159.Google Scholar
Gannavaram, S., Vedvyas, C. and Debrabant, A. (2008). Conservation of the pro-apoptotic nuclease activity of endonuclease G in unicellular trypanosomatid parasites. Journal of Cell Science 121, 99109.Google Scholar
Giorgio, V., von Stockum, S., Antoniel, M., Fabbro, A., Fogolari, F., Forte, M., Glick, G. D., Petronilli, V., Zoratti, M., Szabó, I., Lippe, G. and Bernardi, P. (2013). Dimers of mitochondrial ATP synthase form the permeability transition pore. Proceedings of the National Academy of Sciences 110, 58875892.Google Scholar
Halestrap, A. P. (2014). The C ring of the F1Fo ATP synthase forms the mitochondrial permeability transition pore: a critical appraisal. Frontiers in Oncology 25, 234.Google Scholar
Halestrap, A. P. and Davidson, A. M. (1990). Inhibition of Ca2+-induced large-amplitude swelling of liver and heart mitochondria by cyclosporin is probably caused by the inhibitor binding to mitochondrial-matrix peptidyl-prolyl cis-trans isomerase and preventing it interacting with the adenine nucleotide translocase. The Biochemical Journal 268, 153160.CrossRefGoogle ScholarPubMed
Jimenez, V., Paredes, R., Sosa, M. A. and Galanti, N. (2008). Natural programmed cell death in T. cruzi epimastigotes maintained in axenic cultures. Journal of Cellular Biochemistry 105, 688698.Google Scholar
Jiménez-Ruiz, A., Alzate, J. F., Macleod, E. T., Lüder, C. G., Fasel, N. and Hurd, H. (2010). Apoptotic markers in protozoan parasites. Parasites and Vectors 3, 104.Google Scholar
Kim, S. Y., Shim, M. S., Kim, K. Y., Weinreb, R. N., Wheeler, L. A. and Ju, W. K. (2014). Inhibition of cyclophilin D by cyclosporin A promotes retinal ganglion cell survival by preventing mitochondrial alteration in ischemic injury. Cell Death and Disease 5, e1105.Google Scholar
Kroemer, G., Galluzzi, L. and Brenner, C. (2007). Mitochondrial membrane permeabilization in cell death. Physiological Reviews 87, 99163.CrossRefGoogle ScholarPubMed
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680685.Google Scholar
Malouitre, S., Dube, H., Selwood, D. and Crompton, M. (2009). Mitochondrial targeting of cyclosporin A enables selective inhibition of cyclophilin-D and enhanced cytoprotection after glucose and oxygen deprivation. Biochemical Journal 425, 137148.Google Scholar
Meslin, B., Barnadas, C., Boni, V., Latour, C., De Monbrison, F. and Kaiser, K. (2007). Features of apoptosis in Plasmodium falciparum erythrocytic stage through a putative role of PfMCA1 metacaspase-like protein. Journal of Infectious Diseases 195, 18521859.Google Scholar
Paris, C., Loiseau, P. M., Bories, C. and Bréard, J. (2004). Miltefosine induces apoptosis-like death in Leishmania donovani promastigotes. Antimicrobial Agents and Chemotherapy 48, 852859.Google Scholar
Petronilli, V., Miotto, G., Canton, M., Colonna, R., Bernardi, P. and Di Lisa, F. (1998). Imaging the mitochondrial permeability transition pore in intact cells. Biofactors 8, 263272.Google Scholar
Piacenza, L., Peluffo, G. and Radi, R. (2001). L-arginine-dependent suppression of apoptosis in Trypanosoma cruzi: contribution of the nitric oxide and polyamine pathways. Proceedings of the National Academy of Sciences of USA 98, 73017306.Google Scholar
Piacenza, L., Irigoín, F., Alvarez, M. N., Peluffo, G., Taylor, M. C. and Kelly, J. M. (2007). Mitochondrial superoxide radicals mediate programmed cell death in Trypanosoma cruzi: cytoprotective action of mitochondrial iron superoxide dismutase overexpression. Biochemical Journal 403, 323334.Google Scholar
Potenza, M., Galat, A., Minning, T. A., Ruiz, A. M., Duran, R., Tarleton, R. L. and Bua, J. (2006). Analysis of the Trypanosoma cruzi cyclophilin gene family and identification of Cyclosporin A binding proteins. Parasitology 132, 867882.Google Scholar
Proto, W. R., Coombs, G. H. and Mottram, J. C. (2013). Cell death in parasitic protozoa: regulated or incidental? Nature Reviews Microbiology 11, 5866.Google Scholar
Van Heerde, W. L., Poort, S., Van't Veer, C., Reutelingsperger, C. P. and de Groot, P. G. (1994). Binding of recombinant annexin V to endothelial cells: effect of annexin V binding on endothelial-cell-mediated thrombin formation. Biochemical Journal 302(Pt 1), 305312.Google Scholar
Vaseva, A. V., Marchenko, N. D., Ji, K., Tsirka, S. E., Holzmann, S. and Moll, U. M. (2012). p53 opens the mitochondrial permeability transition pore to trigger necrosis. Cell 149, 15361548.CrossRefGoogle ScholarPubMed