Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T00:39:21.186Z Has data issue: false hasContentIssue false

Observations on chromosomes and gametogenesis of Transversotrema patialense (Trematoda)

Published online by Cambridge University Press:  06 April 2009

R. Mad Havi
Affiliation:
Department of Zoology, Andhra University, Waltair 530003, India
J. V. Ramanjaneyulu
Affiliation:
Department of Zoology, Andhra University, Waltair 530003, India

Summary

The karyotype of Transversotrema patia1en consists of 10 pairs of chromosomes (2n = 20) of which 5 pairs are metacentrics and 5 pairs are submetacentrics. The chromosomes are large and range in size from 5 to 12 μm. The total chromosome length of the diploid complement is 16783 μm. Stages of spermatogenesis including the two gonial divisions and two reduction divisions leading to production of spermatozoa occur in cercarial embryos inside snail tissue, while the maturation divisions of the ovum occur in eggs freshly liberated by the fluke. The chiasma frequency is high, being 3888/cell and 388/bivalent. Cytological data indicate an independent phylogenetic status for the family Transversotrematidae.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benazzi, M. & Benazzi Lentati, G. (1976). Animal Cytogenetics, vol. 1. Platyhelminthes. Gebruder Borntraeger, Germany.Google Scholar
Britt, H. G. (1947). Chromosomes of digenetic trematodes. American Midland Naturalist 81, 276–96.CrossRefGoogle ScholarPubMed
Cable, R. M. (1974). Phylogeny and taxonomy of trematodes with reference to marine species. In Symbiosis in the Sea, (ed. Vernberg, W. A.), pp. 173193. University of South California Press. Columbia S.C.Google Scholar
Darlinoton, C. D. & Lacour, L. F. (1976). The Handling of Chromosomes. 6th Edn.London: George Allen & Unwin Ltd.Google Scholar
Grossman, A. I. & Cain, G. (1981). Karyotypes and chromosome morphologies of Megalodiscu temperatus and Philophthalmus gralli. Journal of Helminthology 55, 71–8.CrossRefGoogle Scholar
Jha, A. G. (1975). Cytogenetics, evolution and systematics of Digenea(Trematoda: Platyhelminthes). Egyptian Journal of Genetics and Cytology 4, 20 1–33.Google Scholar
Jones, A. W. & Mayer, T. C. (1953). The chromosomes of Spirorchis magnitestis (Trematoda: Digenea). Journal of Tennessee Academy of Sciences 28, 301–4.Google Scholar
La Rue, G. L. (1957). The classification of digenetic trematodes: a review and a new system. Experimental Parasitology 6, 306–49.CrossRefGoogle ScholarPubMed
Levan, A. K., Fredga, K. & Sandberg, A. A. (1964). Nomenclature for centromeric position on chromosomes. Hereditas 52, 201–20.CrossRefGoogle Scholar
Loverde, P. T. (1979). Chromosomes of two species of Paragonimus. Transactions of the American Microscopical Society 98, 280–5.CrossRefGoogle ScholarPubMed
Moriyama, N., Tsuji, M. & Seto, T. (1979). Three karyotypes and their phenotypes of Japanese liverflukes (Fasciola sp). Japanese Journal of Parasitology 28, 2333.Google Scholar
Ramanjaneyulu, J. V. & Madhavi, R. (1984). Cytological investigations on two species of allocreadiid trematodes with special reference to the occurrence of triploidy and parthenogenesis in Allocreadium fasciatusi. International Journal for Parasitology 14, 309–16.CrossRefGoogle Scholar
Saksena, J. N. (1969). Chromosome studies of fifteen species of Indian digenetic trematodes. Proceedings of the National Academy of Sciences, India, B 39, 81100.Google Scholar
Taft, S. J. & Legrande, W. H. (1979). Chromosomes of Cyclocoelum oculeum (Trematoda: Cyclocoelidae). Journal of Parasilology 65, 666–7.CrossRefGoogle Scholar