Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T00:58:44.419Z Has data issue: false hasContentIssue false

Nutritional and physiological consequences of tumour glycolysis

Published online by Cambridge University Press:  06 April 2009

W. L. Dills Jr
Affiliation:
Department of Chemistry, University of Massachusetts at Dartmouth, North Dartmouth, Massachusetts 02747, U.S.A.

Summary

A frequent characteristic of many malignant tumours is an increase in anaerobic glycolysis, that is the conversion of glucose to lactate, when compared to normal tissues. The causes of this intensification involve changes in enzyme and glucose transporter levels, shifts of the isoenzyme patterns in the cancer cells to those similar to foetal tissues and a breakdown in the normal control mechanisms, most notably the Pasteur effect. The host must adapt, with a corresponding increase in gluconeogenesis. This change, along with other adaptations made by the host, eventually results in the syndrome known as cancer cachexia, which is characterized by anorexia and depletion and redistribution of the host energy stores. In some ways many malignant tumours behave much like parasites, drawing upon the host for nutrients such as glucose and returning waste products such as lactate to the host for recycling or disposal. This cycling of glucose and lactate between host and tumour has been the target for a number of proposed and tested treatments, with regard to the possible inhibition of tumour growth and/or possible prevention of some or all of the cachectic effects. Some of these suggested treatments have reached the point of clinical testing and show promise for continued research.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aisenberg, A. C. (1961). The Glycolysis and Respiration of Tumors. London: Academic Press.Google Scholar
Argilés, J. M. & Azcón-Bieto, J. (1988). The metabolic environment of cancer. Molecular and Cellular Biochemistry 81, 317.Google Scholar
Argilés, J. M. & López-SorIano, F. J. (1990). Why do cancer cells have such a high glycolytic rate? Medical Hypotheses 32, 151–5.CrossRefGoogle ScholarPubMed
Baker, M., Sandborg, C., Morris, D. & Ookhtens, M. (1974). Competition for host essential and nonessential fatty acids in Ehrlich ascites carcinoma in mice. Cancer Research 37, 2218–25.Google Scholar
Ball, H. A., Wick, A. N. & Sanders, C. (1957). Influence of glucose antimetabolites on the Walker tumor. Cancer Research 17, 235–9.Google ScholarPubMed
Barrett, J. (1981). Biochemistry of Parasitic Helminths Baltimore, MD: University Park Press.CrossRefGoogle Scholar
Belt, J. A., Thomas, J. A., Buchsbaum, R. N. & Racker, E. (1979). Inhibition of lactate transport and glycolysis in Ehrlich ascites tumor cells by bioflavonoids. Biochemistry 18, 3506–11.Google Scholar
Bessell, E. M., Courtenay, V. D., Foster, A. B., Jones, M. & Westwood, J. H. (1973). Some in vivo and in vitro antitumor effects of the deoxyfluoro-D-pyranoses. European Journal of Cancer 9, 463–70.CrossRefGoogle Scholar
Bhide, S. V. (1978). Anticancer properties of isoniazid and hydrazine sulfate. Indian Journal of Experimental Biology 16, 926–8.Google Scholar
Bloxham, D. P. & Lardy, H. A. (1973). Phosphofructokinase The Enzymes 8, 239–77.CrossRefGoogle Scholar
Brennan, M. F. (1977). Uncomplicated starvation versus cancer cachexia. Cancer Research 37, 2359–64.Google Scholar
Brown, J. (1962). Effects of 2-deoxyglucose on carbohydrate metabolism: review of the literature and studies in the rat. Metabolism 11, 1098–112.Google Scholar
Bryant, C. & Behm, C. (1989). Biochemical Adaptation in Parasites. London: Chapman and Hall.Google Scholar
Burk, D. (1939). A colloquial consideration of the Pasteur and neo-Pasteur effects. Cold Spring Harbor Symposium on Quantitative Biology 7, 420–59.CrossRefGoogle Scholar
Burns, R. L., Rosenberger, P. G. & Klebe, R. J. (1976). Carbohydrate preferences of mammalian cells. Journal of Cellular Physiology 88, 307–16.CrossRefGoogle ScholarPubMed
Bustamante, E. & Pedersen, P. L. (1977). High aerobic glycolysis of rat hepatoma cells in culture: role of mitochondrial hexokinase. Proceedings of the National Academy of Sciences, USA. 74, 3735–9.CrossRefGoogle ScholarPubMed
Bustamante, E. & Pedersen, P. L. (1980). Mitochondrial hexokinase of rat hepatoma cells in culture: solubilization and regulatory properties. Biochemistry 19, 4972–7.CrossRefGoogle Scholar
Cahill, G. F. (1971). Physiology of insulin in man. Diabetes 20, 785–99.Google Scholar
Carrascosa, J. M., Martinez, P. & Nuñez De Castro, I. (1984). Nitrogen movement between host and tumor in mice inoculated with Ehrlich ascitic tumor cells. Cancer Research 44, 3831–5.Google Scholar
Chen, S. C. H., Tsai, S. & Nesheim, M. C. (1980). Response of rats fed diets low in glucose and glucose precursors to low levels of starch and chemically modified starch. Journal of Nutrition 110, 1023–31.CrossRefGoogle ScholarPubMed
Chlebowski, R. T., Bulcavage, L., Grosvenor, M., Oktay, E., Block, J. B., Chlebowski, J. S., Ali, I. & Elashoff, R. (1990). Hydrazine sulfate influence on nutritional status and survival in non-small-cell lung cancer. Journal of Clinical Oncology 8, 915.Google Scholar
Chlebowski, R. T., Bulcavage, L., Grosvenor, M., Tsunokai, R., Block, J. B., Heber, D., Scrooc, M., Chlebowski, J. S., Chi, J., Oktay, E., Akman, S. & Ali, I. (1987). Hydrazine sulfate in cancer patients with weight loss. Cancer 59, 406–10.Google Scholar
Clowes, G. H. A. & Keltch, A. K. (1954). Glucose, mannose, and fructose metabolism by ascites tumor cells: effects of dinitrocresol. Proceedings of the Society for Experimental Biology and Medicine 80, 629–34.Google Scholar
Costa, G. (1977). Cachexia, the metabolite component of neoplastic diseases. Cancer Research 37, 2327–35.Google Scholar
Criss, W. E. A. (1969). A new pyruvate kinase isoenzyme in hepatomas. Biochemical and Biophysical Research Communications 35, 901–5.CrossRefGoogle ScholarPubMed
Daughaday, W. H. (1989). Hypoglycemia in patients with non-islet cell tumors. Endocrinology and Metabolism Clinics of North America 18, 91101.CrossRefGoogle ScholarPubMed
Dills, W. L. & Block, E. F. J. (1992). Differential effects of hexose analogs on the rat Walker tumor in vivo and in vitro. Biochemical Archives 8, 221–5.Google Scholar
Dills, W. L., Kwong, E., Covey, T. R. & Nesheim, M. C. (1984). Effects of diets deficient in glucose and glucose precursors on the growth of the Walker carcinosarcoma 256 in rats. Journal of Nutrition 114, 2097–106.CrossRefGoogle ScholarPubMed
Douglas, K. T. & Shinkai, S. (1985). Chemical basis of the action of glyoxalase I, an anticancer agent. Angewandte Chemie (International Edition in English) 24, 3144.CrossRefGoogle Scholar
Douglas, R. G. & Shaw, J. H. F. (1990). Metabolic effects of cancer. British Journal of Surgery 77, 246–54.Google Scholar
Duff, G. W. & Oppenheim, J. J. (1992). Comparative aspects of host–parasite and host–tumor relationships. Cytokine 4, 331–9.CrossRefGoogle ScholarPubMed
Ely, J. O. (1954). 2-Deoxy-D-glucose as an inhibitor of cancerous growth in animals. Journal of the Franklin Institute 258, 157–60.CrossRefGoogle Scholar
Fagan, J. B. & Racker, E. (1978). Determinants of glycolytic rate in normal and transformed chick embryo fibroblasts. Cancer Research 38, 749–58.Google ScholarPubMed
Farina, F. A., Adelman, R. C., Morris, H. P., Lo, C. H. & Weinhouse, S. (1968). Metabolic regulation and enzyme alterations in Morris hepatomas. Cancer Research 28, 1897–900.Google ScholarPubMed
Fenselau, A., Wallis, K. & Morris, H. P. (1975). Acetoacetate coenzyme A transferase activity in rat hepatomas. Cancer Research 35, 2315–20.Google Scholar
Filov, V. A., Danova, L. A., Gershanovich, M. L., Ivin, B. A., Dementyeva, L. A., Beyris, P. V., Ragaishene, V. P., Kasyanenko, I. V., Lisitsa, A. I., Mindlin, S. S. & Kurganova, N. I. (1990). Results of clinical evaluation of hydrazine sulfate. Voprosy Onkologii 36, 721–6.Google ScholarPubMed
Franchi, A., Silvester, P. & Pouysségur, J. (1981). A genetic approach to the role of energy metabolism in the growth of tumor cells: tumorgenicity of fibroblast mutants deficient in either glycolysis or respiration. International Journal of Biochemistry 27, 819–27.Google ScholarPubMed
Flier, J. S., Mueckler, M. M., Usher, P. (1987). Elevated levels of glucose transport and transporter messenger RNA are induced by ras and src oncogenes. Science 235, 1492–5.Google Scholar
Gershanovich, M. L., Danova, L. A., Ivin, B. A. & Filov, V. A. (1981). Results of clinical study of antitumor action of hydrazine sulfate. Nutrition and Cancer 3, 712.CrossRefGoogle ScholarPubMed
Gold, J. (1968). Proposed treatment of cancer by inhibition of gluconeogenesis. Oncology 22, 185207.CrossRefGoogle ScholarPubMed
Gold, J. (1970). Inhibition of Walker 256 intramuscular carcinoma in rats by administration of L-tryptophan sulfate. Oncology 24, 291303.CrossRefGoogle Scholar
Gold, J. (1971). Inhibition of Walker 256 intramuscular carcinoma in rats by administration of hydrazine sulfate. Oncology 25, 6671.CrossRefGoogle ScholarPubMed
Gold, J. (1973). Inhibition by hydrazine sulfate and various hydrazides, of in vivo growth of Walker 256 intramuscular carcinoma, B-16 melanoma, Murphy–Sturm lymphosarcoma and L-1210 solid leukemia. Oncology 27, 6980.CrossRefGoogle ScholarPubMed
Gold, J. (1975). Use of hydrazine sulfate in terminal and preterminal cancer patients: results of investigational new (IND) study in 84 evaluable patients. Oncology 32, 110.CrossRefGoogle ScholarPubMed
Gutman, A., Thilo, E. & Biran, S. (1969). Enzymes of gluconeogenesis in tumor-bearing rats. Israel Journal of Medical Science 5, 9981001.Google Scholar
Haberkorn, U., Reinhardt, M., Strauss, L. G., Oberdorfer, F., Berger, M. R., Altmann, A., Wallich, R., Dimitrakopoulou, A. & Vankaick, G. (1992). Metabolic design of combination therapy: use of enhanced fluorodeoxyglucose uptake caused by chemotherapy. The Journal of Nuclear Medicine 33, 1982–7.Google ScholarPubMed
Hammond, K. D. & Balinsky, D. (1978). Activities of key gluconeogenic enzymes and glycogen synthase in rat and human livers, hepatomas, and hepatoma cell culture. Cancer Research 38, 1317–22.Google Scholar
Hanson, R. L., Ho, R. S., Wiseberg, J. J., Simpson, R., Younathan, E. S. & Blair, J. B. (1984). Inhibition of gluconeogenesis and glycogenolysis by 2,5-anhydro-D-mannitol. Journal of Biological Chemistry 259, 218–23.CrossRefGoogle ScholarPubMed
Holroyde, C. P., Axelrod, R. D., Skutches, C. L., Huff, A. C., Paul, P. & Reichard, G. A. (1979). Lactate metabolism in patients with metastatic colorectal cancer. Cancer Research 39, 4900–4.Google ScholarPubMed
Holroyde, C. P., Gabuzda, T. G., Putnam, R. C., Paul, P. & Reichard, G. A. (1975). Altered glucose metabolism in metastatic carcinoma. Cancer Research 35, 3710–14.Google Scholar
Hume, D. A. & Weidemann, M. J. (1979). Role and regulation of glucose metabolism in proliferating cells. Journal of the National Cancer Institute 62, 38.Google ScholarPubMed
Ibsen, K. H. & Fishman, W. H. (1979). Developmental gene expression in cancer. Biochimica et Biophysica Acta 560, 243–80.Google ScholarPubMed
Ibsen, K. H., Orlando, R. A., Garratt, K. N., Hernandez, A. M., Giorlando, S. & Nungaray, G. (1982). Expression of multimolecular forms of pyruvate kinase in normal, benign and malignant human breast tissue. Cancer Research 42, 888–92.Google ScholarPubMed
Jain, V. K., Purohit, S. C. & Pohlit, W. (1977). Optimization of cancer therapy: part I – inhibition of repair of X-ray induced potentially lethal damage by 2-deoxy-D-glucose in Ehrlich-ascites tumour cells. Indian Journal of Experimental Biology 15, 711–13.Google ScholarPubMed
Johnson, J. H., Belt, J. A., Dubinsky, W. P., Zimniak, A. & Racker, E. (1980). Inhibition of lactate transport in Ehrlich ascites tumor cells and human erythrocytes by a synthetic anhydride of lactic acid. Biochemistry 19, 3836–40.CrossRefGoogle ScholarPubMed
Karimzadegan, E., Clifford, A. J. & Hill, F. W. (1979). A rat bioassay for measuring the comparative availability of carbohydrates and its application to legume foods, pure carbohydrates and polyols. Journal of Nutrition 109, 2247–59.CrossRefGoogle ScholarPubMed
Konijn, A. M., Muogbo, D. N. C. & Guggenheim, K. (1970). Metabolic effects of carbohydrate-free diets. Israel Journal of Medical Science 6, 498505.Google ScholarPubMed
Kraaijenhagen, R. R., Rijksen, G. & Staal, G. E. J. (1980). Hexokinase distribution and regulatory properties in lymphoid cells. Biochimica et Biophysica Acta 631, 402–11.Google Scholar
Kwong, E., Nesheim, M. C. & Dills, W. L. (1984). The influence of diet on the regression of the Walker carcinosarcoma 256 in rats. Journal of Nutrition 114, 2324–30.Google Scholar
Landau, B., Laszlo, J., Stengle, J. & Burk, D. (1958). Certain metabolic and pharmacologic effects in cancer patients given infusions of 2-deoxy-D-glucose. Journal of the National Cancer Institute 21, 485–94.Google Scholar
Lanque, K. F., Hemington, J. G., Ohnishi, T., Morris, H. P. & Williamson, J. R. (1977). Defects in anion and electron transport in Morris hepatoma mitochondria. In Hormones and Cancer pp. 131167. New York: Academic Press.Google Scholar
Laszlo, J., Landau, B., Wight, K. & Burk, D. (1958). The effect of glucose analogues on the metabolism of human leukemic cells. Journal of the National Cancer Institute 21, 475–83.Google Scholar
Lazo, P. A. (1981). Amino acids and glucose utilization by different metabolic pathways in ascites-tumor cells. European Journal of Biochemistry 117, 1925.CrossRefGoogle Scholar
Lerner, H. J. & Regelson, W. (1976). Clinical trial of hydrazine sulfate in solid tumors. Cancer Treatment Reports 60, 959–60.Google Scholar
Liu, K. J. M., Kleps, R., Henderson, T. & Nyhus, L. (1991). 13C-NMR study of hepatic pyruvate carboxylase activity in tumor rats. Biochemical and Biophysical Research Communications 179, 366–71.Google Scholar
Mansour, T. E. (1972). Phosphofructokinase. Current Topics in Cellular Regulation 5, 146.Google Scholar
Mares-Perlman, J. A. & Shrago, E. (1988). Energy substrate utilization in freshly isolated Morris hepatoma 7777 cells. Cancer Research 48, 602–9.Google Scholar
Marks, V. & Teale, J. D. (1991). Tumours producing hypoglycaemia. Diabetes/Metabolism Reviews 7, 7991.Google Scholar
Monder, C. (1967). α-Ketoaldehyde dehydrogenase, an enzyme that catalyzes the enzymic oxidation of methylglyoxal to pyruvate. Journal of Biological Chemistry 242, 4603–9.Google Scholar
Morrison, S. D. (1989). Cancer cachexia. In Cancer Growth and Progression; Influence of Tumor Development of the Host (ed. Liotta, L. A.), pp. 176213. Dordrecht: Kluwer Academic.Google Scholar
Ochoa, M., Wittes, R. & Krakoff, I. (1975). Trial of hydrazine sulfate (NSC-150014) in patients with cancer. Cancer Chemotherapy Reports 59, 1151–3.Google Scholar
Ookhtens, M. & Baker, N. (1979). Fatty acid oxidation to H20 by Ehrlich ascites carcinoma in mice. Cancer Research 39, 973–80.Google Scholar
Pedersen, P. (1978). Tumor mitochondria in the bioenergetics of cancer cells. Progress in Experimental Tumor Research 22, 190274.Google Scholar
Pouysségur, J. A., Franchi, A., Salomon, J. C. & Sylvestre, P. (1980 a). Isolation of a hamster fibroblast mutant defective in hexose transport and aerobic glycolysis: its use to dissect the malignant phenotype. Proceedings of the National Academy of Sciences, USA 77, 2698–701.CrossRefGoogle ScholarPubMed
Pouysségur, J. A., Franchi, A. & Sylvestre, P. (1980 b). Relationship between increased aerobic glycolysis and DNA synthesis initiation studied using glycolytic mutant fibroblasts. Nature 287, 445–7.Google Scholar
Presek, P., Glossmann, H., Eigenbrodt, E., Schoner, W., Rübsamen, H., Friis, R. R. & Bauer, H. (1980). Similarities between a phosphoprotein (pp60src) associated protein kinase of Rous sarcoma virus and a cyclic adenosine 3′-5′-monophosphate independent protein kinase that phosphorylates pyruvate kinase type M2. Cancer Research 40, 1733–41.Google Scholar
Racker, E. (1976). Why do tumor cells have a high glycolytic rate? Journal of Cellular Physiology 89, 697700.CrossRefGoogle Scholar
Racker, E., Johnson, J. H. & Blackwell, M. T. (1983). The role of ATPase in glycolysis of Ehrlich ascites tumor cells. Journal of Biological Chemistry 258, 3702–5.CrossRefGoogle ScholarPubMed
Ray, P. D., Hanson, R. L. & Lardy, H. A. (1970). Inhibition by hydrazine of gluconeogenesis in the rat. Journal of Biological Chemistry 245, 690–6.Google Scholar
Ray, S. & Ray, M. (1982). Purification and characterization of NAD and NADP-linked –70.Google Scholar
Reichard, G. A., Moury, N. F., Hochella, N. J., Putnam, R. C. & Weinhouse, S. (1964). Blood glucose replacement rates in human cancer patients. Cancer Research 24, 71–6.Google ScholarPubMed
Rezek, M. & Kroeger, E. A. (1976). Glucose antimetabolites and hunger (theoretical article). Journal of Nutrition 106, 143–57.CrossRefGoogle ScholarPubMed
Riquelme, P. T., Wernette-Hammond, M. E., Kneer, N. M. & Lardy, H. A. (1983). Regulation of carbohydrate metabolism by 2,5-anhydro-D-mannitol. Proceedings of the National Academy of Sciences, USA. 80, 4301–5.Google Scholar
Rofe, A. M., Bias, R. & Conyers, R. A. J. (1986). Ketone-body metabolism in tumour-bearing rats. Biochemical Journal 233, 485–91.Google Scholar
Rolleston, F. S. (1972). A theoretical background to the use of measured concentrations of intermediate in study of the control of intermediary metabolism. Current Topics in Cellular Regulation 5, 4775.Google Scholar
Sato, J., Wang, Y. M. & Vaneys, J. (1981). Metabolism of xylitol and glucose in rats bearing hepatocellular carcinomas. Cancer Research 41, 3192–9.Google Scholar
Sauer, L. A. & Dauchy, R. T. (1983). Ketone body, glucose, lactic acid and amino acid utilization by tumors in vivo in fasted rats. Cancer Research 43, 3497–503.Google ScholarPubMed
Schein, P. S., Kisner, D., Haller, D., Blecher, M. & Hamosh, M. (1979). Cachexia of malignancy. Cancer 43, 2070–5.Google Scholar
Schreiber, J. R., Balcavage, W. X., Morris, H. P. & Pedersen, P. L. (1970). Enzymatic and spectral analysis of cytochrome oxidase in adult and fetal rat liver and Morris hepatoma 3924A. Cancer Research 30, 2497–501.Google ScholarPubMed
Shapot, V. S. (1972). Some biochemical aspects of the relationships between the tumor and the host. Advances in Cancer Research 15, 253–86.Google Scholar
Shapot, V. S. (1979). On the multiform relationships between the tumor and the host. Advances in Cancer Research 30, 89150.Google Scholar
Sokoloff, B., Saelhoff, C., Kato, S., Chamelin, I. & Beach, J. (1956). Effects of a glucose analog on nucleic acids in tumor tissue. Growth 20, 256–73.Google Scholar
Spemulli, E., Wampler, G. L. & Regelson, W. (1979). Clinical study of hydrazine sulfate in advanced cancer patients. Cancer Chemotherapy and Pharmacology 3, 121–4.Google Scholar
Stein, T. P. (1978). Cachexia, gluconeogenesis and progressive weight loss in cancer patients. Journal of Theoretical Biology 73, 51–9.CrossRefGoogle ScholarPubMed
Stevens, H. J. C., Covey, T. R. & Dills, W. L. (1985). Inhibition of gluconeogenesis by 2,5-anhydromannitol in isolated rat hepatocytes. Biochimica et Biophysica Acta 845, 502–6.Google Scholar
Tayek, J. A., Heber, D. & Chlebowski, R. T. (1987). Effect of hydrazine sulphate on whole-body protein breakdown measured by 14C-lysine metabolism in lung cancer patients. Lancet 1, 241–4.Google Scholar
Taylor, C. H., Morris, H. P. & Weber, G. A. (1969). Comparison of the properties of pyruvate kinase from hepatoma 3924A, normal liver and muscle. Life Sciences 8, 635–44.Google Scholar
Theologides, A. (1976). Anorexia-producing intermediary metabolites. The American Journal of Clinical Nutrition 29, 552–8.Google Scholar
Thomson, M. & Koons, J. (1981). Modified lipoprotein lipase activities, rates of lipogenesis and lipolysis as factors leading to lipid depletion in C57BL6 mice bearing preputial gland tumor ESR 586. Cancer Research 41, 3228–32.Google Scholar
Eys, J. van (1982). Tumor-host competition for nutrients. The Cancer Bulletin 34, 136–40.Google Scholar
Eys, J. van (1985). Nutrition and cancer: physiological interrelationships. Annual Reviews of Nutrition 5, 435–61.Google ScholarPubMed
Warburg, O. (1930). The Metabolism of Tumors. London: Arnold Constable.Google Scholar
Warburg, O. (1956). On the origin of cancer cells. Science 124, 309–14.CrossRefGoogle Scholar
Waterhouse, C. (1974). Lactate metabolism in patients with cancer. Cancer 33, 6671.Google Scholar
Weber, G. (1982) Differential carbohydrate metabolism in tumor and host. In Molecular Interrelationships of Nutrition and Cancer (ed. Arnott, M. S., van Eys, J. & Wang, Y.-M.), pp. 191208. New York: Raven Press.Google Scholar
Weber, G. (1983). Biochemical strategy of cancer cells and the design of chemotherapy: G. H. A. Clowes memorial lecture. Cancer Research 43, 3466–92.Google Scholar
Weber, M. J., Salter, D. W. & McNair, T. E. (1982). Increased glucose transport in malignant cells: analysis of its molecular basis. In Molecular Interrelationships of Nutrition and Cancer (ed. Arnott, M. S., van Eys, J. & Wang, Y.-M.), pp. 183–90. New York: Raven Press.Google Scholar
Weinhouse, S. (1972). Glycolysis, respiration, and anomalous gene expression in experimental hepatomas: G. H. A. Clowes memorial lecture. Cancer Research 32, 2007–16.Google Scholar
Weinhouse, S. (1982). Changing perceptions of carbohydrate metabolism in tumors. In Molecular Interrelationships of Nutrition and Cancer (ed. Arnott, M. S., van Eys, J. & Wang, J.-M.), pp. 6781. New York: Raven Press.Google Scholar
Wu, R. & Racker, E. (1959). Regulatory mechanisms in carbohydrate metabolism. III. Journal of Biological Chemistry 234, 1029–35.Google Scholar
Yasmineh, W. G. & Theologides, A. (1992). Effect of tumor necrosis factor on enzymes of gluconeogenesis in the rat. Proceedings of the Society for Experimental Biology and Medicine 199, 97103.Google Scholar
Young, V. R. (1977). Energy metabolism and requirements in the cancer patient. Cancer Research 37, 2336–47.Google Scholar
Yushok, W. D. (1958). Inhibition of glucolysis and fructolysis of Krebs 2 ascites carcinoma cells by chemical agents. Cancer Research Suppl. 19, 379–89.Google Scholar
Yushok, W. D. (1959). Metabolism of ascites tumor cells. I. Rate of glycolysis and competitive utilization of fructose, mannose, and glucose. Cancer Research 19, 104–11.Google ScholarPubMed
Zeilke, H. R., Ozand, P. R., Tildon, J. T., Sevdalian, D. A. & Cornblath, M. (1976). Growth of human diploid fibroblasts in the absence of glucose utilization. Proceedings of the National Academy of Sciences, USA 73, 4110–14.Google Scholar