Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T18:58:16.311Z Has data issue: false hasContentIssue false

Niche restriction in parasites: proximate and ultimate causes

Published online by Cambridge University Press:  07 April 2017

K. Rohde
Affiliation:
Department of Zoology, The University of New England, Armidale NSW 2351, Australia

Summary

Hutchinson's (1957) definition of an ecological niche as a multidimensional hypervolume determined by a number of physical and biotic variables is adopted. The number of niche dimensions is very great, but as a working hypothesis it is assumed that a few are sufficient to characterize the niche of a parasite species to a high degree of accuracy. They are host species, microhabitat(s), macrohabitat(s), geographical range, sex and age of host, season, food and hyperparasites. Methods to measure niche width, in particular specificity indices, are discussed, and some examples of niche restriction are described. Proximate and ultimate causes of niche restriction are discussed, mainly using marine parasites as examples. Among proximate causes of one niche dimension, host specificity, are ecological factors restricting exposure to infection to certain host species; host-specific chemical factors that induce hatching, direct infective stages to a host and bring about settlement of a parasite; factors that lead to mortality in or on the wrong host; morphological adaptations that guarantee survival in or on the ‘correct’ host; and availability of suitable hosts. Many factors are likely to be responsible for microhabitat specificity, but have been little studied, except for some physiological and morphological adaptations to particular microhabitats. Macrohabitats and geographical range may be determined by the distribution of intermediate hosts and certain food items, and by a variety of chemical and physical factors. Hosts of different sexes may differ in feeding habits and the composition of the skin, and thus acquire parasites differentially. Hosts of different age may be differentially infected due to accumulation of parasites with age, loss of parasites due to developing resistance (or immunity), and different size and feeding habits. Among ultimate causes of niche restriction and segregation are avoidance of competition, predation and hyperparasites; facilitation of mating; reinforcement of reproductive barriers; and adaptations to environmental complexity. Few studies permit a decision on which factor or factors are responsible in particular cases. Interspecific competition may play a greater role in helminth communities of some host groups than of others, but it seems that, overall, its role has been exaggerated at least for marine parasites. Some ‘classical’ examples of microhabitat segregation explained by interspecific competition can also be explained by reinforcement of reproductive barriers. There is evidence for the importance of facilitation of mating in microhabitat restriction, and the availability of many vacant niches indicates that competition, overall, is not of great importance.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aho, J. M. (1990). Helminth communities of amphibians and reptiles: comparative approaches to understanding patterns and processes. In Parasite Communities: Patterns and Processes (ed. Esch, G. W., Bush, A. O. and Aho, J. M.), pp. 157–95. London, New York: Chapman and Hall.CrossRefGoogle Scholar
Arme, C. & Halton, D. W. (1974). Observations on the occurrence of Diclidophora merlangi (Trematoda: Monogenea) on the gills of whiting, Gadus merlangus. Journal of Fish Biology 4, 2732.Google Scholar
Arthur, J. R., Margolis, L., Whitaker, D. J. & Mcdonald, T. E. (1982). A quantitative study of economically important parasites of walleye pollock(Theragra chalcogramma) from British Columbian waters and effects of postmortem handling on their abundancy in the musculature. Canadian Journal of Fisheries and Aquatic Science 39, 710–26.Google Scholar
Bates, R. M. & Kennedy, C. R. (1990). Interactions between the acanthocephalans Pomporhynchus laevis and Acanthocephalus anguillae in rainbow trout: testing an exclusion hypothesis. Parasitology 100, 435–4.Google Scholar
Boxshall, G. A. (1976). The host specificity of Lepeophtheirus pectoralis (Müller, 1776) (Copepoda: Caligidae). Journal of Fish Biology 8, 255–64.Google Scholar
Bush, A. O. (1990). Helminth communities in avian hosts: determinants of pattern. In Parasite Communities: Patterns and Processes (ed. Esch, G. W., Bush, A. O. and Aho, J. M.), pp. 197232. London, New York: Chapman and Hall.CrossRefGoogle Scholar
Byrnes, T. (1985). The taxonomy, host specificity and zoogeography of metazoan ectoparasites infecting Australian bream (Acanthopagrus spp.). Ph.D. Thesis. University of New England, Armidale.Google Scholar
Byrnes, T. & Rohde, K. (1992). Geographical distribution and host specificity of ectoparasites of Australian bream, Acanthopagrus spp. (Sparidae). Folia Parasitologica 39, 249–64.Google Scholar
Crompton, D. W. T. (1976). Entry into the host and site selection. In Ecological Aspects of Parasitology. (ed. Kennedy, C. R.), pp. 4173. Amsterdam, Oxford: North Holland Publ. Co.Google Scholar
Dollfus, R. P. (1946). Parasites (animaux et végétaux) des helminthes, hyperparasites, ennemis et prédateurs des helminthes parasites et des helminthes libres. Encyclopedie Biologique, Paris 27, 1483.Google Scholar
Elder, H. Y. (1979). Studies on the host-parasite relationship between the parasitic prosobranch Thyca crystallina and the asteroid starfish Linckia laevigata. Journal of Zoology 187, 369–91.Google Scholar
Fried, B., Tancer, R. B. & Fleming, S. J. (1980). In vitro pairing of Echinostoma revolutum (Trematoda) metacercariae and adults, and characterization of worm products involved in chemoattraction. Journal of Parasitology 66, 1014–18.CrossRefGoogle ScholarPubMed
Fried, B. & Diaz, V. (1987). Site finding and pairing of Echinostoma revolutum (Trematoda) on the chick chorioallantois. Journal of Parasitology 73, 546–8.CrossRefGoogle ScholarPubMed
Goater, C. P. (1993). Population biology of Meiogymnophallus minutus (Trematoda: Gymnophallidae) in cockles from the Exe estuary. Journal of the Marine Biological Association of the U.K. 73, 163–77.CrossRefGoogle Scholar
Halton, D. W. (1974). Hemoglobin absorption in the gut of a monogenetic trematode, Diclidophora merlangi. Journal of Parasitology 60, 5966.CrossRefGoogle ScholarPubMed
Holmes, J. C. (1986). The structure of helminth communities. In Parasitology- Quo Vadis Proceedings of the Sixth International Congress of Parasitology (ed. Howell, M. J.), pp. 203–8. Canberra: Australian Academy of Science.Google Scholar
Holmes, J. C. (1990). Helminth communities in marine fishes. In Parasite Communities: Patterns and Processes, (ed. Esch, G. W., Bush, A. O. & Aho, J. M.), pp. 101–30. London and New York: Chapman and Hall.CrossRefGoogle Scholar
Holmes, J. C. & Bartolt, P. (1993). Spatio-temporal structure of the communities of helminths in the digestive tract of Sciaena umbra L. 1758 (Teleostei). Parasitology 106, 519–25.CrossRefGoogle ScholarPubMed
Hutchinson, G. E. (1957). Concluding remarks. Cold Spring Harbor Symposium on Quantitative Biology 22, 415–27.CrossRefGoogle Scholar
Kamegai, S. (1986). Studies on Diplozoon nipponicum Goto, 1891. (43). The gathering phenomenon of diporpae and the effect of cortisone acetate on the union of diporpae. In Parasitology — Quo Vadis?, 2. Handbook, Program and Abstracts, 6th International Congress of Parasitology (ed. Howell, M. J.). Canberra: Australian Academy of Science.Google Scholar
Kearn, G. C. (1967). Experiments on host-finding and host-specificity in the monogenean skin parasite Entobdella soleae. Parasitology 57, 585605.CrossRefGoogle ScholarPubMed
Kearn, G. C. (1970 a). The production, transfer and assimilation of spermatophores by Entobdella soleae, a monogenean skin parasite of the common sole. Parasitology 60, 301–11.Google ScholarPubMed
Kearn, G. C. (1970b). The physiology and behaviour of the monogenean skin parasite Entobdella soleae in relation to its host (Solea solea). In Ecology and Physiology of Parasites, (ed. Fallis, A. M.), pp. 161–87. London: Adam Hilger.Google Scholar
Kearn, G. C. (1988). The monogenean skin parasite Entobdella soleae: movement of adults and juveniles from host to host (Solea solea). International Journal for Parasitology 18, 313–19.CrossRefGoogle ScholarPubMed
Kennedy, C. R. (1985). Site segregation by species of Acanthocephala in fish, with special reference to eels, Anguilla anguilla. Parasitology 90, 375–90.CrossRefGoogle Scholar
Kennedy, C. R. (1992). Field evidence for interactions between the acanthocephalans Acanthocephalus anguillae and A. lucii in eels, Anguilla anguilla. Ecological Parasitology 11, 122—34.Google Scholar
Kennedy, C. R. (1993). Introductions, spread and colonization of new localities by fish helminths and crustacean parasites in the British Isles: a perspective and appraisal. Journal of Fish Biology 43, 287301.Google Scholar
Krebs, C. J. (1989). Ecological Methodology. New York: Harper Collins Publ.Google Scholar
Kuris, A. (1990). Guild structure of larval trematodes in molluscan hosts: prevalence, dominance and significance of competition. In Parasite Communities: Patterns and Processes (ed. Esch, G. W., Bush, A. O. and Aho, J. M.), pp. 69100.London, New York: Chapman and Hall.CrossRefGoogle Scholar
Lambert, A. & Maillard, C. (1974). Parasitisme branchial simultane par deux espéces de Diplectanum Diesing, 1858 (Monogenea, Monopisthocotylea) chez Dicentrarchus labrax (L., 1758) (Teleosteen), Comptes Rendus Academie de Sciences, Paris 279 (D), 1345–7.Google Scholar
Lambert, A. & Maillard, C. (1975). Repartition branchiate de deux monogenes: Diplectanum aequans (Wagener 1857) Diesing, 1858 et Diplectanum laubieri Lambert et Maillard, 1974 (Monogenea, Monopisthocotylea) parasites simultanes de Dicentrarchus labrax (teleosteen). Annales de Parasitologie Humaine et Compared 50, 691–9.CrossRefGoogle Scholar
Lester, R. J. G. (1972). Attachment of Gyrodactylus to Gasterosteus and host response. Journal of Parasitology 58, 717–22.CrossRefGoogle ScholarPubMed
Lester, R. J. G. & Adams, J. R. (1974). Gyrodactylus alexanderi: reproduction, mortality, and effect on its host Gasterosteus aculeatus. Canadian Journal of Zoology 52, 827–33.CrossRefGoogle ScholarPubMed
Lie, K. J., Basch, P. F. & Heyneman, D. (1968). Direct and indirect antagonism between Paryphostomum segregatum and Echinostoma paraensei in the snail Biomphalaria glabrata. Zeitschrift fur Parasitenkunde 31, 101–7.Google Scholar
Macdonald, S. (1974). Host skin mucus as a hatching stimulant in Acanthocotyle lobianchi, a monogenean from the skin of Raja spp. Parasitology 68, 331–8.Google ScholarPubMed
Macdonald, S. (1975). Hatching rhythms in three species of Diclidophora (Monogenea) with observations on host behaviour. Parasitology 71, 211–28.CrossRefGoogle ScholarPubMed
Mackenzie, K. & Gibson, D. (1970). Ecological studies of some parasites of plaice, Pleuronectes platessa (C.) and flounder, Platichthys flesus (L.). In Aspects of Fish Parasitology. Vol. 8, (ed. Taylor, A. E. R. and Muller, R.), pp. 142, Oxford and Edinburgh: Blackwell Publ.Google Scholar
McVicar, A. H. & Fletcher, T. C. (1970). Serum factors in Raja radiata toxic to Acanthobothrium quadripartitum (Cestoda: Tetraphyllidea), a parasite specific to R. naevus. Parasitology 6, 55—63.Google Scholar
Möller, H. (1974). Untersuchungen über die Parasiten der Flunder(Platichthys flesus L.) in der Kieler Förde. Berichte der deutschen zvissenschaftlichen Kommission für Meeresforschung 23, 136—49.Google Scholar
Nigrelli, R. F. (1947). Susceptibility and immunity of marine fishes to Benedenia ( = Epidella) melleni (MacCallum), a monogenetic trematode. III. Natural hosts in the West Indies. Journal of Parasitology 33 (Suppl.), 25.Google ScholarPubMed
Nollen, P. M. (1993). Echinostoma trivolvis: mating behaviour of adults raised in hamsters. Parasitology Research 79, 130–2.CrossRefGoogle ScholarPubMed
Paperna, I. (1963). Dynamics of Dactylogyrus vastator Nybelin (Monogenea) populations on the gills of carp fry in fish ponds. Bamidget Bulletin of Fish Culture, Israel 15, 3150.Google Scholar
Pearson, J. C. (1968). Observations on the morphology and life-cycle of Paucivitellosus fragilis Coil, Reid and Kuntz 1965 (Trematoda: Bivesiculidae). Parasitology 58, 769–88.Google Scholar
Pence, D. B. (1990). Helminth communities of mammalian hosts: concepts at the infracommunity, component and compound community levels. In Parasite Communities: Patterns and Processes (ed. Esch, G. W., Bush, A. O. and Aho, J. M.), pp. 233–60.London, New York: Chapman and Hall.CrossRefGoogle Scholar
Petter, A. J. (1966). Equilibre des especes dans les populations de nematodes parasites du colon des tortues terrestres. Memoires Museum National d'Histoire Naturelle 39, 1252.Google Scholar
Pickering, A. D. (1977). Seasonal changes in the epidermis of the brown trout Salmo trutta (L.). Journal of Fish Biology 10, 561–6.CrossRefGoogle Scholar
Polyanski, Y. I. (1961). Ecology of parasites of marine fishes. In Parasitology of Fishes, (ed. Dogiel, V. A., Petrushevski, G. K. & Polyanski, Yu. I.), pp. 4883.English translation, Edinburgh, London: Oliver & Boyd.Google Scholar
Poulin, R. (1992). Determinants of host-specificity in parasites of freshwater fishes. International Journal for Parasitology 22, 753–8.CrossRefGoogle ScholarPubMed
Price, P. W. (1980). Evolutionary Biology of Parasites. Princeton, New Jersey: Princeton University Press.Google Scholar
Putz, R. E. & Hoffman, G. L. (1964). Studies on Dactylogyrus corporalis n.sp. (Trematoda Monogenea) from the fallfish Semotilus corporalis. Proceedings of the Helminthological Society of Washington 31, 139—43.Google Scholar
Ramasamy, P., Ramalingam, K., Hanna, R. E. J. & Halton, D. W. (1985). Microhabitats of gill parasites (Monogenea and Copepoda) of teleosts (Scomberoides spp.). International Journal for Parasitology 15, 385–97.CrossRefGoogle Scholar
Rogers, W. P. (1957). An alternative approach to the study of host-parasite specificity. International Union of Biological Sciences, Colloquia. 32, 309–11.Google Scholar
Rohde, K. (1973). Structure and development of Lobatostoma manteri sp. nov. (Trematoda, Aspidogastrea) from the Great Barrier Reef, Australia. Parasitology 66, 6383.CrossRefGoogle ScholarPubMed
Rohde, K. (1976 a). Monogenean gill parasites of Scomberomorus commersoni Lacépéde and other mackerel on the Australian east coast. Zeitschrift fur Parasitenkunde 51, 4969.CrossRefGoogle Scholar
Rohde, K. (1976b). Marine parasitology in Australia. Search 7, 477–82.Google Scholar
Rohde, K. (1977). A non-competitive mechanism responsible for restricting niches. Zoologischer Anzeiger 199, 164–72.Google Scholar
Rohde, K. (1979). A critical evaluation of intrinsic and extrinsic factors responsible for niche restriction in parasites. American Naturalist 114, 648–71.CrossRefGoogle Scholar
Rohde, K. (1980 a). Host specificity indices of parasites and their application. Experientia 36, 1369–71.CrossRefGoogle Scholar
Rohde, K. (1980b). Comparative studies on microhabitat utilization by ectoparasites of some marine fishes from the North Sea and Papua New Guinea. Zoologischer Anzeiger 204, 2764.Google Scholar
Rohde, K. (1980 c). Warum sind okologische Nischen begrenzt ? Zwischenartlicher Antagonismus oder innerartlicher Zusammenhalt ? Naturwissenschaftliche Rundschau 33, 98102.Google Scholar
Rohde, K. (1980 d). Species diversification, with special reference to parasites. Proceedings of the 24th Conference of the Australian Society for Parasitology, Adelaide, May 1980Google Scholar
Rohde, K. (1980e). Diversity gradients of marine Monogenea in the Atlantic and Pacific Oceans. Experientia 36, 1368–9.CrossRefGoogle Scholar
Rohde, K. (1982). Ecology of Marine Parasites. St Lucia: University of Queensland PressGoogle Scholar
Rohde, K. (1984). Ecology of marine parasites. Helgoldnder Meeresuntersuchungen 37, 533.CrossRefGoogle Scholar
Rohde, K. (1989). Simple ecological systems, simple solutions to complex problems? Evolutionary Theory 8, 305–50.Google Scholar
Rohde, K. (1991). Intra- and interspecific interactions in low density populations in resource-rich habitats. Oikos 60, 91104.CrossRefGoogle Scholar
Rohde, K. (1992). Latitudinal gradients in species diversity: the search for the primary cause. Oikos 65, 514–27.CrossRefGoogle Scholar
Rohde, K. (1993). Ecology of Marine Parasites. 2nd edition. Oxford: Cab International.CrossRefGoogle Scholar
Rohde, K. (1994). The minor groups of parasitic Platyhelminthes. Advances in Parasitology 33, 145234.CrossRefGoogle ScholarPubMed
Rohde, K. & Hobbs, R. (1986). Species segregation: competition or reinforcement of reproductive barriers ? In Parasite Lives. Papers on Parasites, their Hosts and their Associations to Honour J. F. A. Sprent. (ed. Cremin, M., Dobson, C. & Moorhouse, D. E.), pp. 189–99, St. Lucia, London and New York: University of Queensland Press.Google Scholar
Rohde, K., Roubal, F. & Hewitt, G. C. (1980).Ectoparasitic Monogenea, Digenea and Copepoda from the gills of some fishes of New Caledonia and New Zealand. New Zealand Journal of Marine and Freshwater Research 14, 113.CrossRefGoogle Scholar
Roubal, F. R., Armitage, J. & Rohde, K. (1983). Taxonomy of metazoan ectoparasites of snapper, Chrysophrys auratus (family Sparidae), from southern Australia, eastern Australia and New Zealand. Australian Journal of Zoology (Suppl. 94),168.Google Scholar
Schad, G. A. (1962). Gause's hypothesis in relation to the oxyuroid populations of Testudo graeca. Journal of Parasitology 48, No. 2, Section 2, p. 36.Google Scholar
Schad, G. A. (1963). Niche diversification in a parasitic species flock. Nature, London, 198, 404–6.CrossRefGoogle Scholar
Scott, J. S. (1969). Trematode populations in the Atlantic Argentine, Argentina silus, and their use as biological indicators. Journal of the Fisheries Research Board of Canada 26, 879–91CrossRefGoogle Scholar
Shulman, S. S. & Shulman-Albova, R. E. ( 1953). [Parasites of Fishes of the White Sea.] Akademiya Nauk Sssr, Moscow-Leningrad, 201 pp (In Russian).Google Scholar
Simmons, J. E. & Laurie, J. S. (1972). A Study of Gyrocotyle in the San Juan Archipelago, Puget Sound, UsA, with observations on the host, Hydrolagus colliei (Lay and Bennett). International Journal for Parasitology 2, 5977.CrossRefGoogle Scholar
Sommerville, R. I. (1957). The exsheathing mechanism of nematode infective larvae. Experimental Parasitology 6, 1830.CrossRefGoogle ScholarPubMed
Sousa, W. P. (1990). Spatial scale and the processes structuring a guild of larval trematode parasites. In Parasite Communities: Patterns and Processes, (ed. Esch, G. W., Bush, A. O., and Aho, J. M.), pp. 4167. London, New York: Chapman and Hall.CrossRefGoogle Scholar
Sousa, W. P. (1992). Interspecific interactions among larval trematode parasites of freshwater and marine snails. American Zoologist 32, 583–92.CrossRefGoogle Scholar
Sousa, W. P. (1993). Interspecific antagonism and species coexistence in a diverse guild of larval trematode parasites. Ecological Monographs 63, 103–28.CrossRefGoogle Scholar
Thorson, R. E. (1969). Environmental stimuli and responses of parasitic helminths. Bioscience 19, 126–30.CrossRefGoogle Scholar
Tinsley, R. C. (1989). The effects of host sex on transmission success. Parasitology Today 5, 192—5.CrossRefGoogle ScholarPubMed
Treasurer, J. W. (1993). Management of sea lice (Caligidae) with wrasse (Labridae) on Atlantic salmon (Salmo salar L.) farms. In Pathogens of Wild and Farmed Fish. (ed. Boxshall, G. A. and Defaye, D.), pp. 335–45. New York: Ellis Horwood.Google Scholar
Ulmer, M. J. (1970). Site-finding behaviour in helminths in intermediate and definitive hosts. In Ecology and Physiology of Parasites, (ed. Fallis, A. M.), pp. 123–60. London: Adam Hilger.Google Scholar
Walker, J. C. (1979). Austrobilharzia terrigalensis: a schistosome dominant in interspecific interactions in the molluscan host. International Journal for Parasitology 9, 137–.CrossRefGoogle Scholar
Wheeler, A. (1978). Key to the Fishes of Northern Europe. London: F. Warne.Google Scholar
Williams, H. H. (1960). The intestine in members of the genus Raja and host-specificity in the Tetraphyllidea. Nature 188, 514–16.CrossRefGoogle Scholar
Williams, H. H. (1961). Observations on Echeneibothrium maculatum (Cestoda: Tetraphyllidea). Journal of the Marine Biological Association of the UK 41, 631–52.CrossRefGoogle Scholar
Williams, H. H. (1966). The ecology, functional morphology and taxonomy of Echeneibothrium Beneden, 1849 (Cestoda: Tetraphyllidea), a revision of the genus and comments on Discobothrium Beneden, 1870, Pseudanthobothrium Baer, 1956, and Phormobothrium Alexander, 1963. Parasitology 56, 227–85.CrossRefGoogle ScholarPubMed
Williams, H. H. (1968 a). The taxonomy, ecology and host-specificity of some Phyllobothriidae (Cestoda: Tetraphyllidea), a critical revision of Phyllobothrium Beneden, 1849 and comments on some allied genera. Philosophical Transactions of the Royal Society, London, series B 253, 231307.Google Scholar
Williams, H. H. (1968 b). Phyllobothrium piriei sp. nov. (Cestoda: Tetraphyllidea) from Raja naevus with a comment on its habitat and mode of attachment. Parasitology 58, 929–37.CrossRefGoogle Scholar
Zwölfer, H. (1974). Innerartliche Kommunikationssysteme bei Bohrfliegen. Biologie in unserer Zeit 4, 147–53.CrossRefGoogle Scholar