Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T01:08:12.883Z Has data issue: false hasContentIssue false

Neuropeptides in platyhelminths

Published online by Cambridge University Press:  06 April 2009

I. Fairweather
Affiliation:
School of Biology and Biochemistry, The Queen's University of Belfast, Belfast BT7 1NN
D. W. Halton
Affiliation:
School of Biology and Biochemistry, The Queen's University of Belfast, Belfast BT7 1NN

Extract

The neuropeptide story began in 1928 with the description by Ernst Scharrer of gland-like nerve cells in the hypothalamus of the minnow, Phoxinus laevis. Because these nerve cells were overwhelmingly specialized for secretory activity, overshadowing other neuronal properties, Scharrer termed them ‘neurosecretory neurons’. What was even more remarkable about the cells was that their products were released into the bloodstream to act as hormones, specifically neurohormones. Neurosecretory cells were identified largely on morphological grounds. That is, they could be stained with special techniques, such as chrome-haematoxylin and paraldehyde-fuchsin, although the techniques are far from specific, staining non-neurosecretory cells as well. However, the basis for the ‘special’ neurosecretory techniques is the demonstration of sulphur-containing proteins – so they are indicative of peptide-producing neurones. An alternative characteristic of neurosecretory cells is the presence of large (> 100 nm), dense-cored vesicles at the electron microscope level; these are the so-called elementary granules of neurosecretion, or ENGs. However, implicit in the concept of neurosecretion is that the prime function of the neurosecretory cell is in endocrine regulation, exerting a hormone-like control over some aspect of the organism's metabolism, by controlling endocrine glands and other effector organs. To satisfy this criterion, evidence had to be obtained of cycles of secretory activity within the cell that could be correlated with a change in the physiological condition of the organism.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anctil, M. (1987). Bioactivity of FMRFamide and related peptides on a contractile system of the coelenterate Renilla köllikeri. Journal of Comparative Physiology B 157, 31–8.CrossRefGoogle Scholar
Baguña, J. (1986). Efecte de neuropèptids i factors de creixement sobre la proliferació cellular a planàries. Biologia del Desenvolupament 4, 71–8.Google Scholar
Baguña, J. (1987). Efectes dels estimuladors i antagonistes dels neuropéptids Substància P i Substància K sobre la proliferació cellular a planàries. Biologia del Desenvolupament 5, 274–83.Google Scholar
Ballesta, J., Bloom, S. R. & Polak, J. M. (1985). Distribution and localization of regulatory peptides. CRC Critical Reviews in Clinical Laboratory Sciences 22, 185218.CrossRefGoogle ScholarPubMed
Bargmann, W., Lindner, E. & Andres, K. H. (1967). Über Synapsen an endokrinen Epithelzellen und die Definition sekretorischer Neurone. Untersuchungen am zwischenlappen der Katzenhypophyse. Zeitschrift für Zellforschung und Mikroskopische Anatomie 77, 282–98.CrossRefGoogle Scholar
Basch, P. F. & Gupta, B. C. (1988). Immunocytochemical localization of regulatory peptides in six species of trematode parasites. Comparative Biochemistry and Physiology 91C, 565–70.Google ScholarPubMed
Bautz, A., Schilt, J., Richoux, J.-P. & Dubois, M.-P. (1980). Détection immunocytologique, dénombrement et localisation des cellules à somatostatine (SRIF) chez deux espèces de Planaires, Dugesia lugubris et Dendrocoelum lacteum (Turbellariés, Triclades). Comptes rendus des séances de l' Académie des Sciences, Série D 291, 833–6.Google Scholar
Bloom, A. (1981). Studies of the mode of action of metrifonate and DDVP in schistosomes-cholinesterase activity and the hepatic shift. Acta Pharmacologica et Toxicologica 49, Suppl. V, 109–13.CrossRefGoogle ScholarPubMed
Bloom, F. E., Battenberg, E., Ferron, A., Mancillas, J. R., Milner, R. J., Siggins, G. & Sutcliffe, J. G. (1985). Neuropeptides: interactions and diversities. Recent Progress in Hormone Research 41, 339–67.Google ScholarPubMed
Bodenmüller, H. & Roberge, M. (1985). The head activator: discovery, characterisation, immunoassays and biological properties in mammals. Biochimica et Biophysica Acta 825, 261–7.CrossRefGoogle ScholarPubMed
Bodenmüller, H. & Schaller, H. C. (1981). Conserved amino acid sequence of a neuropeptide, the head activator, from coelenterates to humans. Nature, London 293, 579–80.CrossRefGoogle ScholarPubMed
Bueding, E., Liu, C. L. & Rogers, S. H. (1972). Inhibition by metrifonate and dichlorvos of cholinesterases in schistosomes. British Journal of Pharmacology 46, 480–7.CrossRefGoogle ScholarPubMed
Catto, B. A. & Ottesen, E. A. (1979). Serotonin uptake in schistosomules of Schistosoma mansoni. Comparative Biochemistry and Physiology 63C, 235–42.Google Scholar
Cho, C. H. (1984). Study of the effects of insulin on the migration of Hymenolepis diminuta in rats. Journal of Helminthology 58, 291–3.CrossRefGoogle ScholarPubMed
Clegg, J. A. (1965). Secretion of lipoprotein by Mehlis' gland in Fasciola hepatica. Annals of the New York Academy of Sciences 118, 969–86.CrossRefGoogle ScholarPubMed
Cowden, C. & Stretton, A. O. W. (1990). AF2, a nematode neuropeptide. Neuroscience 16, 305.Google Scholar
Cowden, C., Stretton, A. O. W. & Davis, R. E. (1989). AFI, a sequenced bioactive neuropeptide isolated from the nematode Ascaris suum. Neuron 2, 1465–73.CrossRefGoogle Scholar
Davey, K. G. & Breckenridge, W. R. (1967). Neurosecretory cells in a cestode, Hymenolepis diminuta. Science 158, 931–2.CrossRefGoogle Scholar
Davies, C. (1979). The forebody glands and surface features of the metacercariae and adults of Microphallus similis. International Journal for Parasitology 3, 553–64.CrossRefGoogle Scholar
Loof, A.De & Schoofs, L. (1990). Homologies between the amino acid sequences of some vertebrate peptide hormones and peptides isolated from invertebrate sources. Comparative Biochemistry and Physiology 95B, 459–68.Google ScholarPubMed
Dixon, K. E. & Mercer, E. H. (1965). The fine structure of the nervous system of the cercaria of the liver fluke, Fasciola hepatica. Journal of Parasitology 51, 967–76.CrossRefGoogle ScholarPubMed
Duvaux-Miret, O., Dissons, C., Gautron, J. P., Patton, E., Kordon, C. & Capron, A. (1990). The helminth Schistosoma mansoni expresses a peptide similar to human β-endorphin and possesses a proopiomelanocortin-related gene. The New Biologist 2, 93–9.Google ScholarPubMed
Fairweather, I., Macartney, G. A., Johnston, C. F., Halton, D. W. & Buchanan, K. D. (1988). Immunocytochemical demonstration of 5-hydroxytryptamine (serotonin) and vertebrate neuropeptides in the nervous system of excysted cysticercoid larvae of the rat tapeworm, Hymenolepis diminuta (Cestoda, Cyclophyllidea). Parasitology Research 74, 371–9.CrossRefGoogle ScholarPubMed
Fairweather, I., Mahendrasingam, S., Johnston, C. F., Halton, D. W. & Shaw, C. (1990). Peptidergic nerve elements in three developmental stages of the tetraphyllidean tapeworm Trilocularia acanthiaevulgaris. Parasitology Research 76, 497508.CrossRefGoogle ScholarPubMed
Fairweather, I. & Threadgold, L. T. (1981). Hymenolepis nana: the fine structure of the oncosphere. II. The ‘penetration gland’ and nerve cells. Parasitology 82, 445–58.CrossRefGoogle Scholar
Fairweather, I. & Threadgold, L. T. (1983). Hymenolepis nana:: the fine structure of the adult nervous system. Parasitology 86, 89103.CrossRefGoogle ScholarPubMed
Falkmer, S., Håkanson, R. & Sundler, F. (1984). Evolution and Tumour Pathology of the Neuroendocrine System. Amsterdam: Elsevier Science Publishers B.V.Google Scholar
Featherston, D. W. (1972). Taenia hydatigena. IV. Ultrastructure study of the tegument. Zeitschrift für Parasitenkunde 38, 214–32.CrossRefGoogle ScholarPubMed
Feurle, G. E., Bodenmüller, H. & Baća, I. (1983). The neuropeptide head activator stimulates amylase release from rat pancreas in vitro. Neuroscience Letters 38, 287–9.CrossRefGoogle ScholarPubMed
Friedel, T. & Webb, R. A. (1979). Stimulation of mitosis in Dugesia tigrina by a neurosecretory fraction. Canadian Journal of Zoology 57, 1818–19.CrossRefGoogle ScholarPubMed
Gönnert, R. (1962). Histologische Untersuchungen über den Feinbau der Einbildungsstätte (oogenotop) von Fasciola hepatica. Zeitschrift für Parasitenkunde 21, 475–92.CrossRefGoogle Scholar
Graff, D. & Grimmelikhuijzen, C. J. P. (1988 a). Isolation of < Glu-Ser-Leu-Arg-Trp-NH2, a novel neuropeptide from sea anemones. Brain Research 442, 354–8.CrossRefGoogle ScholarPubMed
Graff, D. & Grimmelikhuijzen, C. J. P. (1988 b). Isolation of < Glu-Gly-Leu-Arg-Trp-NH2 (Antho-RWamide II), a novel neuropeptide from sea anemones. FEBS Letters 239, 137–40.CrossRefGoogle ScholarPubMed
Grasso, M. (1967 a). Prime indagini sulla presenza di cellule neurosecretrici in Fasciola hepatica. Atti dell' Accademia nazionale dei Lincei. Rendiconti della Classe di Scienze Fisiche Matematiche e Naturali 42, 85–7.Google Scholar
Grasso, M. (1967 b). Distribuzione e attività delle cellule neurosecretrici in Fasciola hepatica. Atti dell' Accademia nazionale dei Lincei. Rendiconti della Classe di Scienze Fisiche Matematiche e Naturali 42, 903–5.Google Scholar
Grasso, M. & Quaglia, A. (1972). Ultrastructural studies in neurosecretion and gamete ripening in platyhelminthes. General and Comparative Endocrinology 18, 593–4.Google Scholar
Grasso, M. & Quaglia, A. (1974). Osservazioni al microscopio elettronico sui fenomeni di neurosecrezione in Fasciola hepatica. Parassitologia 16, 113–5.Google Scholar
Grimmelikhuijzen, C. J. P. & Graff, D. (1986). Isolation of < Glu-Gly-Arg-Phe-NH2 (Antho-RFamide), a neuropeptide from sea anemones. Proceedings of the National Academy of Sciences, USA 83, 9817–21.CrossRefGoogle Scholar
Grimmelikhuijzen, C. J. P., Graff, D., Groeger, A., Hahn, M., Anctil, M., McFarlane, I. D. & Spencer, A. N. (1987). Novel neuropeptides from coelenterates. Biological Chemistry Hoppe-Seyler 368, 1283–4.Google Scholar
Grimmelikhuijzen, C. J. P. & Groeger, A. (1987). Isolation of the neuropeptide p Glu-Gly-Arg-Phe-amide from the pennatulid Renilla köllikeri. FEBS Letters 211, 105–8.CrossRefGoogle Scholar
Gupta, B. C. & Basch, P. F. (1989). Human chorionic gonadotropin-like immunoreactivity in schistosomes and Fasciola. Parasitology Research 76, 86–9.CrossRefGoogle ScholarPubMed
Gustafsson, M. K. S. (1987). Immunocytochemical demonstration of neuropeptides and serotonin in the nervous system of adult Schistosoma mansoni. Parasitology Research 74, 168–74.CrossRefGoogle ScholarPubMed
Gustafsson, M. K. S., Jukanen, A. C. & Wikgren, M. C. (1983). Activation of the peptidergic neurosecretory system in Diphyllobothrium dendriticum (Cestoda) at suboptimal temperatures. Zeitschrift für Parasitenkunde 69, 279–82.CrossRefGoogle ScholarPubMed
Gustafsson, M. K. S., Lehtonen, M. A. I. & Sundler, F. (1986). Immunocytochemical evidence for the presence of ‘mammalian’ neurohormonal peptides in neurones of the tapeworm Diphyllobothrium dendriticum. Cell and Tissue Research 243, 41–9.CrossRefGoogle ScholarPubMed
Gustafsson, M. K. S. & Wikgren, M. C. (1981 a). Peptidergic and aminergic neurons in adult Diphyllobothrium dendriticum Nitzsch, 1824 (Cestoda, Pseudophyllidea). Zeitschrift für Parasitenkunde 64, 121–34.CrossRefGoogle Scholar
Gustafsson, M. K. S. & Wikgren, M. C. (1981 b). Release of neurosecretory material by protrusions of bounding membranes extending through the axolemma, in Diphyllobothrium dendriticum (Cestoda). Cell and Tissue Research 220, 473–9.CrossRefGoogle ScholarPubMed
Gustafsson, M. K. S. & Wikgren, M. C. (1981 c). Activation of the peptidergic neurosecretory system in Diphyllobothrium dendriticum (Cestoda: Pseudophyllidea). Parasitology 83, 243–7.CrossRefGoogle Scholar
Gustafsson, M. K. S. & Wikgren, M. C. (1989). Development of immunoreactivity to the invertebrate neuropeptide small cardiac peptide B in the tapeworm Diphyllobothrium dendriticum. Parasitology Research 75, 396400.CrossRefGoogle Scholar
Gustafsson, M. K. S., Wikgren, M. C., Karhi, T. J. & Schot, L. P. C. (1985). Immunocytochemical demonstration of neuropeptides and serotonin in the tapeworm Diphyllobothrium dendriticum. Cell and Tissue Research 240, 255–60.CrossRefGoogle ScholarPubMed
Halton, D. W., Brennan, G. P., Maule, A. G., Shaw, C., Johnston, C. F. & Fairweather, I. (1991). The ultrastructure and immunogold-labelling of pancreatic polypeptide-immunoreactive cells associated with the egg-forming apparatus of a monogenean parasite, Diclidophora merlangi. Parasitology (in the Press).CrossRefGoogle ScholarPubMed
Happich, F. A. & Boray, J. C. (1969). Quantitative diagnosis of chronic fasciolosis. 2. The estimation of daily total egg production of Fasciola hepatica and the number of adult flukes in sheep by faecal egg counts. Australian Veterinary Journal 45, 329–31.CrossRefGoogle ScholarPubMed
Harris, K. R. & Cheng, T. C. (1972). Presumptive neurosecretion in Leucochloridiomorpha constantiae (Trematoda) and its possible role in governing maturation. International Journal for Parasitology 2, 361–7.CrossRefGoogle ScholarPubMed
Hillman, G. R. & Senft, A. W. (1975). Anticholinergic properties of the antischistosomal drug hycanthone. American Journal of Tropical Medicine and Hygiene 24, 827–34.CrossRefGoogle ScholarPubMed
Hökfelt, T., Holets, V. R., Staines, W., Meister, B., Melander, T., Schalling, M., Schultzberg, M., Freedman, J., Björklund, H., Olson, L., Lindh, B., Elfvin, L.-G., Lundberg, J. M., Lindgren, J. Å., Samuelsson, B., Pernow, B., Terenius, L., Post, C., Everitt, B. & Goldstein, M. (1986). Coexistence of neuronal messengers - an overview. Progress in Brain Research 68, 3370.CrossRefGoogle ScholarPubMed
Hökfelt, T., Johansson, O., Ljungdahl, Å., Lundberg, J. M. & Schultzberg, M. (1980). Peptidergic neurones. Nature, London 284, 515–21.CrossRefGoogle ScholarPubMed
Holman, G. M., Wright, M. S. & Nachman, R. J. (1988). Insect neuropeptides: coming of age. ISI Atlas of Science: Animal and Plant Sciences 1, 129–36.Google Scholar
Holmgren, S. (1989). The Comparative Physiology of Regulatory Peptides. London: Chapman and Hall Ltd.CrossRefGoogle Scholar
Itoh, N., Obata, K.-I., Yanaihara, N. & Okamoto, H. (1983). Human pre-provasoactive intestinal polypeptide contains a novel PHI-27-like peptide, PHM-27. Nature, London 304, 547–9.CrossRefGoogle ScholarPubMed
Iversen, L. L. (1987). Overview: peptides in the nervous system. In Neuropeptides and Their Peptidases (ed. Turner, A. J.), pp. 38. Chichester: Ellis Horwood Ltd.Google Scholar
Jensen, J. (1989). Substance P and other tachykinins. In The Comparative Physiology of Regulatory Peptides (ed. Holmgren, S.), pp. 130–49. London: Chapman and Hall Ltd.CrossRefGoogle Scholar
Johnston, C. F., Shaw, C., Halton, D. W. & Fairweather, I. (1990). Confocal scanning laser microscopy and helminth neuroanatomy. Parasitology Today 6, 305–8.CrossRefGoogle ScholarPubMed
Jones, A. (1975). The morphology of Bothriocephalus scorpii (Müller) (Pseudophyllidea, Bothriocephalidae) from littoral fishes in Britain. Journal of Helminthology 49, 251–61.CrossRefGoogle ScholarPubMed
Kajiwara, S. & Sato, T. (1986). Growth promoting effect of head activator in cultured chick embryo brain cells. Acta Endocrinologica 113, 604–8.Google ScholarPubMed
Kaldany, R.-R. J., Nambu, J. R. & Scheller, R. H. (1985). Neuropeptides in identified Aplysia neurons. Annual Review of Neuroscience 8, 431–55.CrossRefGoogle ScholarPubMed
Kobayashi, H., Bern, H. A. & Urano, A. (1985). Neurosecretion and the Biology of Neuropeptides. Proceedings of the Ninth International Symposium on Neurosecretion, Susono-shi, 1984. Tokyo: Japan Scientific Societies Press.Google Scholar
Kow, L.-M. & Pfaff, D. W. (1988). Neuromodulatory actions of peptides. Annual Review of Pharmacology and Toxicology 28, 163–88.CrossRefGoogle ScholarPubMed
Krajniak, K. G. & Price, D. A. (1990). Authentic FMRFamide is present in the polychaete Nereis virens. Peptides 11, 75–7.CrossRefGoogle ScholarPubMed
Krieger, D. T. (1983). Brain peptides: what, where, and why? Science 222, 975–85.CrossRefGoogle ScholarPubMed
Kumazawa, H. & Moriki, T. (1986). Immunoenzymatic demonstration of a presumptive prolactin-like substance in Hymenolepis nana. Zeitschrift für Parasitenkunde 72, 137–9.CrossRefGoogle ScholarPubMed
Lender, T. (1974). The role of neurosecretion in freshwater planarians. In Biology of the Turbellaria (ed. Riser, N. W. & Morse, M. P.), pp. 460–75. New York: McGraw-Hill.Google Scholar
Lender, T. (1980). Endocrinologie des planaires. Bulletin de la Société Zoologique de France 105, 173–91.Google Scholar
Lumsden, R. D. & Specian, R. (1980). The morphology, histology, and fine structure of the adult stage of the cyclophyllidean tapeworm Hymenolepis diminuta. In Biology of the Tapeworm Hymenolepis diminuta (ed. Arai, H. P.), pp. 157280. New York: Academic Press.CrossRefGoogle Scholar
Lyons, K. M. (1969). Compound sensilla in monogenean skin parasites. Parasitology 59, 625–36.CrossRefGoogle Scholar
McFarlane, I. D., Graff, D. & Grimmelikhuijzen, C. J. P. (1987). Excitatory actions of Antho-RFamide, an anthozoan neuropeptide, on muscles and conducting systems in the sea anemone Calliactis parasitica. Journal of Experimental Biology 133, 157–68.CrossRefGoogle Scholar
McKay, D. M., Halton, D. W., Johnston, C. F., Fairweather, I. & Shaw, C. (1990 a). Occurrence and distribution of putative neurotransmitters in the frog-lung parasite Haplometra cylindracea (Trematoda: Digenea). Parasitology Research 76, 509–17.CrossRefGoogle ScholarPubMed
McKay, D. M., Shaw, C., Halton, D. W., Johnston, C. F., Fairweather, I. & Buchanan, K. D. (1990 b). Mammalian regulatory peptide immunoreactivity in the trematode parasite Haplometra cylindracea and the lung of its frog host, Rana temporaria: comparative chromatographic characterisation using reverse-phase high-performance liquid chromatography. Comparative Biochemistry and Physiology 96C, 345–51.Google ScholarPubMed
McKay, D. M., Halton, D. W., Johnston, C. F., Fairweather, I. & Shaw, C. (1991). Cytochemical demonstration of cholinergic, serotoninergic and peptidergic nerve elements in Gorgoderina vitelliloba (Trematoda: Digenea). International Journal for Parasitology (in the Press).CrossRefGoogle ScholarPubMed
Magee, R. M. (1990). An ontogenetic study of neuropeptides and 5-hydroxytryptamine (serotonin) in the liver fluke Fasciola hepatica. Ph.D. thesis, The Queen's University of Belfast.Google Scholar
Magee, R. M., Fairweather, I., Johnston, C. F., Halton, D. W. & Shaw, C. (1989). Immunocytochemical demonstration of neuropeptides in the nervous system of the liver fluke, Fasciola hepatica (Trematoda, Digenea). Parasitology 98, 227–38.CrossRefGoogle ScholarPubMed
Magee, R. M., Fairweather, I., Shaw, C., McKillop, J. M., Montgomery, W. I., Johnston, C. F. & Halton, D. W. (1991). Quantification and partial characterisation of regulatory peptides in the liver fluke, Fasciola hepatica from different mammalian hosts. Comparative Biochemistry and Physiology (in the Press).Google ScholarPubMed
Maggio, J. E. (1988). Tachykinins. Annual Review of Neuroscience 11, 1328.CrossRefGoogle ScholarPubMed
MatskÁsi, I. (1970). On the neurosecretory cells of Opisthodiscus diplodiscoides Cohn (Trematodes), and their structural changes during the day. Folia Parasitologica 17, 2530.Google Scholar
Maule, A. G., Halton, D. W., Johnston, C. F., Fairweather, I. & Shaw, C. (1989 a). Immunocytochemical demonstration of neuropeptides in the fish-gill parasite, Diclidophora merlangi (Monogenoidea). International Journal for Parasitology 19, 307–16.CrossRefGoogle ScholarPubMed
Maule, A. G., Shaw, C., Halton, D. W., Johnston, C. F., Fairweather, I. & Buchanan, K. C. (1989 b). Tachykinin immunoreactivity in the parasitic flatworm Diclidophora merlangi and its fish host the whiting (Merlangius merlangus): radioimmunoassay and chromatographic characterisation using region-specific substance P and neurokinin A antisera. Comparative Biochemistry and Physiology 94C, 533–41.Google ScholarPubMed
Maule, A. G., Shaw, C., Halton, D. W., Johnston, C. F. & Fairweather, I. (1989 c). Localization, quantification, and characterization of pancreatic polypeptide immunoreactivity in the parasitic flatworm Diclidophora merlangi and its fish host (Merlangius merlangus). General and Comparative Endocrinology 74, 50–6.CrossRefGoogle ScholarPubMed
Maule, A. G., Halton, D. W., Johnston, C. F., Shaw, C. & Fairweather, I. (1990 a). The serotoninergic, cholinergic and peptidergic components of the nervous system in the monogenean parasite, Diclidophora merlangi: a cytochemical study. Parasitology 100, 255–73.CrossRefGoogle ScholarPubMed
Maule, A. G., Halton, D. W., Johnston, C. F., Shaw, C. & Fairweather, I. (1990 b). A cytochemical study of the serotoninergic, cholinergic and peptidergic components of the reproductive system in the monogenean parasite, Diclidophora merlangi. Parasitology Research 76, 409–19.CrossRefGoogle ScholarPubMed
Mettrick, D. F. & Podesta, R. B. (1982). Effect of gastrointestinal hormones and amines on intestinal motility and the migration of Hymenolepis diminuta in the rat small intestine. International Journal for Parasitology 12, 151–4.CrossRefGoogle ScholarPubMed
Morseth, D. J. (1967). Observations on the fine structure of the nervous system of Echinococcus granulosus. Journal of Parasitology 53, 492500.CrossRefGoogle ScholarPubMed
Pan, S. C.-T. (1980). The fine structure of the miracidium of Schistosoma mansoni. Journal of Invertebrate Pathology 36, 307–72.CrossRefGoogle ScholarPubMed
Phares, C. K. (1987). Plerocercoid growth factor: a homologue of human growth hormone. Parasitology Today 3, 346–9.CrossRefGoogle ScholarPubMed
Pica-Mattoccia, L., Cioli, D. & Archer, S. (1988). Binding of tritiated hycanthone and hycanthone N-methylcarbamate to macromolecules of drug-sensitive and drug-resistant schistosomes. Molecular and Biochemical Parasitology 31, 8796.CrossRefGoogle ScholarPubMed
Pierobon, P., Kemali, M. & Milici, N. (1989). Substance P and Hydra: an immunohistochemical and physiological study. Comparative Biochemistry and Physiology 92C, 217–21.Google ScholarPubMed
Platt, N. & Reynolds, S. E. (1988). Invertebrate neuropeptides. In Comparative Invertebrate Neurochemistry (ed. Hunt, G. G. & Olsen, R. W.), pp. 175226. London and Sydney: Croon Helm Ltd.CrossRefGoogle Scholar
Polak, J. M. (1989). Regulatory Peptides. Basel: Birkhäuser Verlag.CrossRefGoogle Scholar
Porchet, M., Dhainaut-Courtois, N., Cardon, C. & Bataille, M. (1985). Structure and functions of neuropeptides of polychaete annelids. In Neurosecretion and the Biology of Neuropeptides (ed. Kobayashi, H., Bern, H. A. & Urano, A.), pp. 377–85. Tokyo: Japan Scientific Societies Press and Berlin: Springer-Verlag.Google Scholar
Radlowski, J. (1975). Neurosecretory system in Fasciola hepatica Linné. Zoologica Poloniae 25, 211–29.Google Scholar
Reimer, L. W. (1971). Neurosekretorische Zellen bei Cercarien. Parasitologische Schriftenreihe 21, 157–60.Google Scholar
Reuter, M. (1987). Immunocytochemical demonstration of serotonin and neuropeptides in the nervous system of Gyrodactylus salaris (Monogenea). Acta Zoologica 68, 187–93.CrossRefGoogle Scholar
Reuter, M. (1988). Development and organization of nervous systems visualized by immunocytochemistry in three flatworm species. Progress in Zoology 36, 181–4.Google Scholar
Richard, J., Klein, M. J. & Stoeckel, M. E. (1989). Neural and glandular localisation of substance P in Echinostoma caproni (Trematoda-Digenea). Parasitology Research 75, 641–8.CrossRefGoogle ScholarPubMed
Rohde, K. (1965). The cell types found in the pharynx of Polystomoides malayi Rohde, 1963. Medical Journal of Malaya 20, 55.Google Scholar
Rohde, K. (1968). Das Nervensystem der Gattung Polystomoides Ward, 1917 (Monogenea). Zeitschrift für Morphologie der Tiere 62, 5876.CrossRefGoogle Scholar
Rohde, K. (1972 a). The Aspidogastrea, especially Multicotyle purvisi Dawes, 1941. Advances in Parasitology 10, 77151.CrossRefGoogle Scholar
Rohde, k. (1972 b). Ultrastructure of the nerves and sense receptors of Polystomoides renschi Rohde and P. malayi Rohde (Monogenea: Polystomatidae). Zeitschrift für Parasitenkunde 40, 307–20.CrossRefGoogle ScholarPubMed
Saló, E. & Baguñà, J. (1986). Stimulation of cellular proliferation and differentiation in the intact and regenerating planarian Dugesia (G.) tigrina by the neuropeptide substance P. Journal of Experimental Zoology 237, 129–35.CrossRefGoogle ScholarPubMed
Schaller, H. C. & Bodenmüller, H. (1981). Isolation and amino acid sequence of a morphogenetic peptide from hydra. Proceedings of the National Academy of Sciences, USA 78, 7000–4.CrossRefGoogle ScholarPubMed
Schaller, H. C. & Bodenmüller, H. (1986). Structure and function of the head activator in Hydra and in mammals. In Handbook of Comparative Opioid and Related Neuropeptide Mechanisms, vol. 1 (ed. Stefano, G. B.), pp. 8992. Boca Raton, Florida: CRC Press.Google Scholar
Scharrer, B. (1976). Neurosecretion - comparative and evolutionary aspects. Progress in Brain Research 45, 125–37.CrossRefGoogle ScholarPubMed
Scharrer, B. (1978). Current concepts on the evolution of the neurosecretory neuron. In Neurosecretion and Neuroendocrine Activity. Evolution, Structure and Function. Proceedings of the VIIth International Symposium on Neurosecretion, Leningrad, August 1976 (ed. Bargmann, W., Oksche, A., Polenov, A. & Scharrer, B.), pp. 914. Berlin, Heidelberg, New York: Springer-Verlag.Google Scholar
Scharrer, B. (1979). Neurosecretion and neuroendocrinology in historical perspective. In Hormonal Proteins and Peptides, vol. VII, Hypothalamic Hormones (ed. Li, C. H.), pp. 279292. New York: Academic Press.Google Scholar
Scharrer, B. (1982). Peptidergic neurons. Acta Morphologica Neerlando-Scandinavia 20, 219–23.Google ScholarPubMed
Scharrer, B. (1985). Neurosecretion: the development of a concept. In Current Trends in Comparative Endocrinology, vol. 1. Proceedings of the Ninth International Symposium on Comparative Endocrinology, Hong Kong, 1981, pp. 23–7. Hong-Kong: Hong Kong University Press.Google Scholar
Scharrer, B. (1987). Neurosecretion: beginnings and new directions in neuropeptide research. Annual Review of Neuroscience 10, 117.CrossRefGoogle ScholarPubMed
Scharrer, E. (1928). Die Lichtempfindlichkeit blinder Elritzen (Untersuchungen über das Zwischenhirm der Fische I). Zeitschrift für vergleichende Physiologie 7, 138.CrossRefGoogle Scholar
Senft, A. W. & Hillman, G. R. (1976). Hycanthone effects on schistosomes and its likely mode of action. In Biochemistry of Parasites and Host-Parasite Relationships (ed. Bossche, H.Van den), pp. 619–28. Amsterdam: Elsevier/North-Holland Biomedical Press.Google Scholar
Shaw, C. & Johnston, C. F. (1991). Role of regulatory peptides in parasitic platyhelminths and their vertebrate hosts: possible novel factors in host-parasite interactions. Parasitology 102 (Suppl.) S93–S105.CrossRefGoogle ScholarPubMed
Shyamasundari, K. & Rao, K. H. (1975). The structure and cytochemistry of the neurosecretory cells of Fasciola gigantica Cobbold and Fasciola hepatica L. Zeitschrift für Parasitenkunde 47, 103–9.CrossRefGoogle ScholarPubMed
Silk, M. H. & Spence, I. M. (1969). Ultrastructural studies of the blood fluke – Schistosoma mansoni. III. The nerve tissue and sensory structures. South African Journal of Medical Science 34, 93104.Google Scholar
Skowerska, M. & Czechowicz, K. (1985). Fine structure of the cerebral ganglion neurons in Polystoma integerrimum (Frölich) with the reference to their neurosecretory nature. Zoologica Poloniae 32, 191200.Google Scholar
Skuce, P. J., Johnston, C. F., Fairweather, I., Halton, D. W., Shaw, C. & Buchanan, K. D. (1990 a). Immunoreactivity to the pancreatic polypeptide family in the nervous system of the human blood fluke, Schistosoma mansoni. Cell and Tissue Research 261, 573–81.CrossRefGoogle Scholar
Skuce, P. J., Johnston, C. F., Fairweather, I., Halton, D. W. & Shaw, C. (1990 b). A confocal scanning laser microscope study of the peptidergic and serotoninergic components of the nervous system in larval Schistosoma mansoni. Parasitology 101, 227–34.CrossRefGoogle ScholarPubMed
Smyth, J. D. & Halton, D. W. (1983). The Physiology of Trematodes. Cambridge: Cambridge University Press.Google Scholar
Specian, R. D. & Lumsden, R. D. (1980). The microanatomy and fine structure of the rostellum of Hymenolepis diminuta. Zeitschrift für Parasitenkunde 63, 7188.CrossRefGoogle ScholarPubMed
Sukhdeo, M. V. K., Hsu, S. C., Thompson, C. S. & Mettrick, D. F. (1984). Hymenolepis diminuta: behavioural effects of 5-hydroxytryptamine, acetylcholine, histamine and somatostatin. Journal of Parasitology 70, 682–8.CrossRefGoogle ScholarPubMed
Sukhdeo, M. V. K. & Sukhdeo, S. C. (1989). Gastrointestinal hormones: environmental cues for Fasciola hepatica? Parasitology 98, 239–43.CrossRefGoogle ScholarPubMed
Swaab, D. F., Pool, C. W. & Leeuwen, F. W.Van (1977). Can specificity ever be proved in immunocytochemical staining? Journal of Histochemistry and Cytochemistry 25, 388–91.CrossRefGoogle ScholarPubMed
Thorndyke, M. C. & Whitfield, P. J. (1987). Vasoactive intestinal polypeptide-like immunoreactive tegumental cells in the digenean helminth Echinostoma liei: possible role in host-parasite interactions. General and Comparative Endocrinology 68, 202–7.CrossRefGoogle ScholarPubMed
Turner, A. J. (1987 a). Neuropeptides and Their Peptidases. Chichester: Ellis Horwood Ltd.Google Scholar
Turner, A. J. (1987 b). Endopeptidase - 24.11. In Neuropeptides and Their Peptidases (ed. Turner, A. J.), pp. 183201. Chichester: Ellis Horwood Ltd.Google Scholar
Turner, R. S. (1946). Observations on the central nervous system of Leptoplana acticola. Journal of Comparative Neurology 85, 5365.CrossRefGoogle ScholarPubMed
Ude, J. (1962). Neurosekretorische Zellen im Cerebralganglion von Dicrocoelium lanceatum St. u. H. (Trematoda-Digenea). Zoologischer Anzeiger 169, 455–7.Google Scholar
Webb, R. A. (1977). Evidence for neurosecretory cells in the cestode Hymenolepis microstoma. Canadian Journal of Zoology 55, 1726–33.CrossRefGoogle ScholarPubMed
Webb, R. A. (1988). Endocrinology of Acoelomates. In Invertebrate Endocrinology, vol. 2, Endocrinology of Selected Invertebrate Types (ed. Downer, R. G. H. & Laufer, H.), pp. 3162. New York: Alan R. Liss.Google Scholar
Webb, R. A. & Friedel, T. (1979). Isolation of a neurosecretory substance which stimulates RNA synthesis in regenerating planarians. Experientia 35, 657–8.CrossRefGoogle ScholarPubMed
White, J. D., Stewart, K. D., Krause, J. E. & McKelvey, J. F. (1985). Biochemistry of peptide-secreting neurons. Physiological Reviews 65, 553606.CrossRefGoogle ScholarPubMed
Wikgren, M. C. (1986). The nervous system of early larval stages of the cestode Diphyllobothrium dendriticum. Acta Zoologica 67, 155–63.CrossRefGoogle Scholar
Wikgren, M., Reuter, M. & Gustafsson, M. (1986). Neuropeptides in free-living and parasitic flatworms (Platyhelminthes). An immunocytochemical study. Hydrobiologica 132, 93–9.CrossRefGoogle Scholar
Wilson, R. A. (1970). Fine structure of the nervous system and specialized nerve endings in the miracidium of Fasciola hepatica. Parasitology 60, 399410.CrossRefGoogle ScholarPubMed
Yeates, R. A. & Ogilvie, B. M. (1976). Nematode acetylcholinesterases. In Biochemistry of Parasites and Host-Parasite Relationships (ed. Bossche, H.Van den), pp. 307–10. Amsterdam: Elsevier/North-Holland Biomedical Press.Google Scholar