Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T10:22:29.877Z Has data issue: false hasContentIssue false

Neoglycosylated liposomes as efficient ligands for the evaluation of specific sugar receptors on macrophages in health and in experimental leishmaniasis

Published online by Cambridge University Press:  06 April 2009

M. Dutta
Affiliation:
Leishmania Group, Biomembrane Division, Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Calcutta 700 032, India
R. Bandyopadhyay
Affiliation:
Leishmania Group, Biomembrane Division, Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Calcutta 700 032, India
M. K. Basu
Affiliation:
Leishmania Group, Biomembrane Division, Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Calcutta 700 032, India

Summary

Receptors interacting with terminal sugars as ligands are involved in the binding of Leishmania donovani promastigotes to the macrophage surface and their subsequent internalization. Mannose and glucose are specifically involved in the binding process. Decreased binding occurs to macrophages already infected with L. donovani either in vivo or in vitro. When mannose- or glucose-bearing liposomes are used as ligands the binding shows similar trends and the percentage inhibition of binding with mannose-bearing liposomes increases when compared to that for the glucose-bearing ones. The decreased binding of the ligand seems to be due to a decrease in the number of receptors after infection. The affinity of the ligands for the binding sites either on the normal macrophages or on the infected macrophages apparently remains the same. The results based on the incorporation of [3H]phenyl alanine and supported by the binding of glycosylated liposomes to both infected and non-infected macrophages suggest that protein synthesis, in general, is suppressed in L. donovani infected macrophages thus affecting also mannose/glucose receptor protein synthesis, resulting in fewer receptors on the macrophage surface.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahmad, I., Agarwal, A., Pal, A., Guru, P. Y., Bachhawat, B. K. & Gupta, C. M. (1991). Tissue distribution and antileishmanial activity of liposomised Amphotericin-B in BALB/c mice. Journal of Bioscience 14, 217–21.CrossRefGoogle Scholar
Albert, B., Bray, D., Lewis, J., Raff, M., Roberts, K. & Watson, J. D. (1989). Cells import cholesterol by taking up low-density lipoproteins (LDL) by receptor-mediated endocytosis. In Molecular Biology of the Cell (ed. Albert, B., Bray, D., Lewis, J., Raff, M., Roberts, K. & Watson, J. D.), pp. 325330, New York: Garland Publishing.Google Scholar
Alving, C. R., Steck, E. A., Chapman, W. L. Jr, Waits, V. B., Hendricks, L. D., Swartz, G. M. Jr & Hansen, W. L. (1978). Therapy of leishmaniasis: superior efficacy of liposome encapsulated drugs. Proceedings of the National Academy of Sciences, USA 75, 2959&63.CrossRefGoogle ScholarPubMed
Berman, J. D., Hanson, W. L., Chapman, W. L., Alving, C. R. & Lopez-Berestein, G. (1986). Antileishmania activity of liposome-encapsulated Amphotericin-B in hamsters and monkeys. Antimicrobial Agents and Chemotherapy 30, 847–51.CrossRefGoogle Scholar
Blackwell, J. M., Ezekowits, R. A. B., Roberts, M. B., Channon, J. Y., Sim, R. B. & Gordon, S. (1985). Macrophage complement and lcctin like receptors bind Leishmania in the absence of serum. Journal of Experimental Medicine 162, 324–31.CrossRefGoogle ScholarPubMed
Brown, M. S., Anderson, R. G. W. & Goldstein, J. L. (1983). Recycling receptors: the round-trip itinerary of migrant membrane protein. Cell 32, 663–7.CrossRefGoogle Scholar
Chang, K. P., Fong, D. & Bray, R. S. (1985). Biology of Leishmania and Leishmaniasis. In Leishmaniasis (ed. Chang, K. P. & Bray, R. S.), pp. 1921. New York: Elsevier Science Publisher B.V.Google Scholar
Channon, J. Y., Roberts, M. B. & Blackwell, J. M. (1984). A study of the differential respiratory burst activity elicited by promastigotes and amastigotes of Leishmania donovani in murine resident peritoneal macrophages. Immunology 53, 345–55.Google ScholarPubMed
Darnell, J., Lodish, H. & Baltimore, D. (1986). Receptor regulation. In Molecular Cell Biology (ed. Darnell, J., Lodish, H. & Baltimore, D.), pp. 695698. New York: Scientific American.Google Scholar
Das, N., Mahato, S. B., Naskar, K., Ghosh, D. K. & Basu, M. K. (1990). Targeting of urea stibamine encapsulated in liposomes to reticuloendothelial system for the treatment of experimental leishmaniasis. Biochemical Medicine and Metabolic Biology 43, 133–9.CrossRefGoogle ScholarPubMed
Fields, R. (1971). The measurement of amino groups in protein and peptides. Biochemical Journal 124, 581–90.CrossRefGoogle Scholar
Ghosh, P. & Bachhawat, B. K. (1980). Grafting of different glycosides on the surface of liposomes and its effect on the tissue distribution of 125I-labelled γ-globulin encapsulated in liposomes. Biochimica et Biophysica Acta 632, 562–72.CrossRefGoogle ScholarPubMed
Ghosh, A. K., Bhattacharyya, F. K. & Ghosh, D. K. (1985). Leishmania donovani: amastigote inhibition and mode of action of Berberine. Experimental Parasitology 60, 404–13.CrossRefGoogle ScholarPubMed
Haensler, J. & Schuber, F. (1988). Preparation of neogalactosylated liposomes and their interaction with mouse peritoneal macrophages. Biochimica et Biophysica Acta 946, 95105.CrossRefGoogle ScholarPubMed
Huang, C. (1969). Studies on phosphatidylcholine vesicles. Formation and physical characteristics. Biochemistry 8, 344–51.CrossRefGoogle ScholarPubMed
Hunter, W. M. (1978). Radioimmunoassay. In Handbook of Experimental Immunology (ed. Weir, D. M.), pp. 14.4. Oxford: Scientific Publications.Google Scholar
Hockertz, S., Decker, D., Kiderlen, A. F. & Baccarini, M. (1986). A method to isolate parasitized macrophages from spleen of Leishmania donovani infected mice. Immunobiology 173, 246.Google Scholar
Kelly, R. B. (1993). A question of endosomes. Nature, London 346, 487–8.CrossRefGoogle Scholar
Klotz, I. M. (1947). The effects of salts and proteins on the spectra of some dyes and indicators. Chemical Review 41, 373–99.CrossRefGoogle ScholarPubMed
Knutson, V. P., Ronnett, G. V. & Daniel Lane, M. (1983). Rapid, reversible internalization of cell surface insulin receptors – correlation with insulin induced down regulation. Journal of Biological Chemistry 258, 12139–42.CrossRefGoogle ScholarPubMed
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193, 265–75.CrossRefGoogle ScholarPubMed
Medda, S., Mukherjee, S., Das, N., Naskar, K., Mahato, S. B. & Basu, M. K. (1993). Sugar-coated liposomes: a novel delivery system for increased drug efficacy and reduced drug toxicity. Biotechnology and Applied Biochemistry 17, 3747.CrossRefGoogle ScholarPubMed
Mukherjee, S., Ghosh, C. & Basu, M. K. (1988). Leishmania donovani: Role of microviscosity of macrophage membrane in the process of parasite attachment and internalization. Experimental Parasitology 66, 1826.CrossRefGoogle ScholarPubMed
New, R. R. C., Chance, M. L. & Heath, S. (1981). Antileishmanial activity of amphotericin and other antifungal agents entrapped in liposomes. Journal of Antibacterial Chemotherapy 8, 371–81.Google ScholarPubMed
Ronnett, G. V., Tennekoon, G., Knutson, V. P. & Daniel Lane, M. (1983). Kinetics of insulin receptor transit to and removal from the plasma membrane. Journal of Biological Chemistry 258, 283–90.CrossRefGoogle ScholarPubMed
Shephard, V. L., Lee, Y. C., Schlesinger, P. H. & Stahl, P. D. (1981). L-Fucose terminated glycoconjugates are recognized by pinocytosis receptors on macrophages. Proceedings of the National Academy of Sciences, USA 78, 1019–22.CrossRefGoogle Scholar
Stahl, P. D. & Gordon, S. (1982). Expression of a mannosyl–fucosyl receptor for endocytosis on cultured primary macrophages and their hybrids. Journal of Cell Biology 93, 4956.CrossRefGoogle ScholarPubMed
Stahl, P. D., Rodman, J. S., Miller, M. J. & Schlesinger, P. H. (1978). Evidence for receptor-mediated binding of glycoproteins, glycoconjugates and lysosomal glycosidases by alveolar macrophages. Proceedings of the National Academy of Sciences, USA 75, 1399–403.CrossRefGoogle ScholarPubMed
Stauber, L. A., Franchino, E. & Grun, J. (1958). An eight-day method for screening compounds against Leishmania donovani in the golden hamster. Journal of Protozoology 5, 269–73.CrossRefGoogle Scholar
Surolia, A., Ahmed, A. & Bachhawat, B. K. (1975). Affinity chromatography of galactose containing biopolymers using covalently coupled Ricinus communis lectin. Biochimica et Biophysica Acta 404, 8392.CrossRefGoogle ScholarPubMed
Torchilin, V. P., Goldmacher, V. S. & Smirnov, V. N. (1978). Comparative studies on covalent and noncovalent immobilization of protein molecules on the surface of liposomes. Biochemical and Biophysical Research Communications 14, 983–90.CrossRefGoogle Scholar