Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-30T00:21:47.218Z Has data issue: false hasContentIssue false

Morphological and molecular characterization of renal ciliates infecting farmed snails in Spain

Published online by Cambridge University Press:  30 April 2009

P. SEGADE
Affiliation:
Laboratorio de Parasitología, Facultad de Biología, Edificio de Ciencias Experimentales, Campus de Lagoas-Marcosende s/n, Universidad de Vigo, 36310 Vigo, Spain
C. P. KHER
Affiliation:
Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
D. H. LYNN
Affiliation:
Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
R. IGLESIAS*
Affiliation:
Laboratorio de Parasitología, Facultad de Biología, Edificio de Ciencias Experimentales, Campus de Lagoas-Marcosende s/n, Universidad de Vigo, 36310 Vigo, Spain
*
*Corresponding author: Laboratorio de Parasitología, Facultad de Biología, Edificio de Ciencias Experimentales, Campus Lagoas-Marcosende s/n, Universidad de Vigo, 36310 Vigo, Spain. Tel: +34 986812394. Fax: +34 986812565. E-mail: [email protected]

Summary

Renal infections by parasitic ciliates were studied in adult snails of Helix aspersa aspersa and Helix aspersa maxima collected from 2 mixed rearing system-based heliciculture farms located in Galicia (NW Spain). The occurrence of ciliates was also examined in slugs (Deroceras reticulatum) invading the greenhouses where first growing and fattening of snails is carried out. Histological examinations revealed a severe destruction of the renal epithelium in heavily infected hosts. Three ciliate isolates, one from each host species, were obtained and grown in axenic cultures. Cultured and parasitic ciliates were characterized morphologically and morphometrically. In addition, the encystment behaviour, the occurrence of autogamy, and the sequences of the mitochondrial cytochrome-c oxidase subunit 1 (cox1) and the small subunit ribosomal RNA (SSU rRNA) genes were also studied in the 3 isolates. A polymorphic life cycle involving resting and reproductive cysts, together with the morphological and morphometrical characteristics and the confirmation that autogamy occurs within cysts, demonstrate that our ciliates belong to the species Tetrahymena rostrata (Kahl, 1926) Corliss, 1952. The 3 isolates formed a well-supported clade using both genetic markers, and were clearly separate from the strain ATCC® 30770™, which has been identified as Tetrahymena rostrata. We argue that our Spanish isolates should be regarded as Tetrahymena rostrata, and that the ATCC isolate should be regarded as a misidentification as neither cytological nor cytogenetical support for its identity has been presented.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arrébola Burgos, J. R. and Álvarez Halcón, R. M. (2001). La explotación de los caracoles terrestres en España: aspectos ecológicos y socioculturales. Temas de Antropología Aragonesa 11, 139172.Google Scholar
Barker, G. M. (1993). Population regulation of Deroceras slugs (Agriolimacidae) in northern New Zealand pastures with particular reference to the role of Tetrahymena rostrata (Kahl) (Ciliata) and Microsporidium novacastriensis (Jones & Selman) (Microspora). Proceedings of the 3rd International Congress of Medical and Applied Malacology, Camden, 18–22 October 1993.Google Scholar
Brooks, W. M. (1968). Tetrahymenid ciliates as parasites of the gray garden slug. Hilgardia 39, 205276.CrossRefGoogle Scholar
Bush, A.O, Lafferty, K. D., Lotz, J. M. and Shostak, A. W. (1997). Parasitology meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology 83, 575583.CrossRefGoogle Scholar
Cabaret, J., Morand, S., Aubert, C. and Yvore, P. (1988). Snail farming: a survey of breeding management, hygiene and parasitism of the garden snail, Helix aspersa Müller. Journal of Molluscan Studies 54, 209214.CrossRefGoogle Scholar
Chantangsi, C., Lynn, D. H., Brandl, M. T., Cole, J. C., Hetrick, N. and Ikonomi, P. (2007). Barcoding ciliates: a comprehensive study of 75 isolates of the genus Tetrahymena. International Journal of Systematic and Evolutionary Microbiology 57, 24122425. DOI 10.1099/ijs.0.64865-0.CrossRefGoogle ScholarPubMed
Chevallier, H. (1990). Breeding in outdoor pens of the edible snail Helix aspersa maxima. Snail Farming Research 3, 3235.Google Scholar
Cooper, J. E. and Knowler, C. (1991). Snails and snail farming: an introduction for the veterinary profession. Veterinary Record 129, 541549.Google ScholarPubMed
Corliss, J. O. (1952 a). Review of the genus Tetrahymena. Proceedings of the Society of Protozoologists 3, 3.Google Scholar
Corliss, J. O. (1952 b). Le cycle autogamique de Tetrahymena rostrata. Comptes Rendus de l'Académie des Sciences 235, 399402.Google ScholarPubMed
Corliss, J. O. (1965). L'autogamie et la sénescence du cilié hyménostome Tetrahymena rostrata (Kahl). L'Année Biologique 4, 4969.Google Scholar
Corliss, J. O. (1970). The comparative systematics of species comprising the hymenostome ciliate genus Tetrahymena. Journal of Protozoology 17, 198209.CrossRefGoogle Scholar
Corliss, J. O. (1973). History, taxonomy, ecology, and evolution of species of Tetrahymena. In Biology of Tetrahymena (ed. Elliott, A. M. and Stroudsburg, P.A), pp. 155. Dowden, Hutchinson & Ross, Stroudsburg, PA, USA.Google Scholar
Daguzan, J. (1989). Snail rearing or heliciculture of Helix aspersa Müller. In Slugs and Snails in World Agriculture, British Crop Protection Council Monograph 41 (ed. Henderson, I. F.), pp. 310. Thornton Heath, UK.Google Scholar
Dupont-Nivet, M., Mallard, J., Bonnet, J. C. and Blanc, J. M. (2000). Direct and correlated responses to individual selection for large adult weight in the edible snail Helix aspersa Müller. Journal of Experimental Zoology 287, 8085.Google ScholarPubMed
Elwood, H. J., Olsen, G. J. and Sogin, M. L. (1985). The small-subunit ribosomal RNA gene sequences from the hypotrichous ciliates Oxytricha nova and Stylonichia pustulata. Molecular Biology and Evolution 2, 399410.Google Scholar
Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783791.CrossRefGoogle ScholarPubMed
Felsenstein, J. (2005). PHYLIP (Phylogeny Inference Package) Version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.Google Scholar
Foissner, W. (1991). Basic light and electron microscopic methods for taxonomic studies of ciliated protozoa. European Journal of Protistology 27, 313330.Google ScholarPubMed
Gutierrez, J. C. (1985). Microspectrophotometric study and kinetics of autogamy during encystment of Tetrahymena rostrata. Cell Biology International Reports 9, 169173.CrossRefGoogle ScholarPubMed
Jerome, C. A. and Lynn, D. H. (1996). Identifying and distinguishing sibling species in the Tetrahymena pyriformis complex (Ciliophora, Oligohymenophorea) using PCR/RFLP analysis of nuclear ribosomal DNA. Journal of Eukaryotic Microbiology 43, 492497.CrossRefGoogle ScholarPubMed
Jerome, C. A., Simon, E. M. and Lynn, D. H. (1996). Description of Tetrahymena empidokyrea n. sp., a new species in the Tetrahymena pyriformis sibling species complex (Ciliophora, Oligohymenophorea), and an assessment of its phylogenetic position using small-subunit rRNA sequences. Canadian Journal of Zoology 74, 18981906.CrossRefGoogle Scholar
Kahl, A. (1926). Neue und wenig bekannte Formen der holotrichen und heterotrichen Ciliaten. Archiv für Protistenkunde 55, 197438.Google Scholar
Kiebre-Toe, M. B., Borges, E., Maurin, F., Richard, Y. and Kodjo, A. (2003). Etude de la flore bactérienne aérobie à Gram négatif de l'escargot d'élevage (Helix aspersa). Revue de Médecine Vétérinaire 154, 605610.Google Scholar
Kimura, M. (1980). A simple method of estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111120.CrossRefGoogle ScholarPubMed
Kozloff, E. N. (1957). A species of Tetrahymena parasitic in the renal organ of the slug Deroceras reticulatum. Journal of Protozoology 4, 7579.CrossRefGoogle Scholar
Kumar, S., Tamura, K. and Nei, M. (2004). MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics 5, 150163.CrossRefGoogle ScholarPubMed
Lazaridou-Dimitriadou, M., Alpoyanni, E., Baka, M., Brouziotis, TH., Kifonidis, N., Milhaloudi, E., Sioula, D. and Vellis, G. (1998). Growth, mortality and fecundity in successive generations of Helix aspersa Müller cultured indoors and crowding effects on fast-, medium-, slow-growing snails of the same clutch. Journal of Molluscan Studies 64, 6774.CrossRefGoogle Scholar
Lynn, D. H. and Strüder-Kypke, M. (2006). Species of Tetrahymena identical by small subunit rRNA gene sequences are discriminated by mitochondrial cytochrome c oxidase 1 gene sequences. Journal of Eukaryotic Microbiology 53, 385387.CrossRefGoogle ScholarPubMed
Medlin, L., Elwood, H. J., Stickel, S. and Sogin, M. L. (1988). The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71, 491499.CrossRefGoogle ScholarPubMed
Ministerio De Medio Ambiente Y Medio Rural Y Marino. Ganadería. Sector Helicícola. Indicadores económicos. Retrieved 9 August 2008, from http://www.mapa.es/es/ganaderia/pags/sector_helicicola/indicadores_economicos.htm. Accessed on 9 August, 2008.Google Scholar
Morand, S. (1985). Première approche du parasitisme de l'escargot petit-gris (Helix aspersa) en élevage. Bulletin de la Société Française de Parasitologie 1, 143146.Google Scholar
Morand, S. (1986). Angiostoma aspersae n. sp. (Nematoda, Angiostomatidae) parasite de Helix aspersa Müller (Gastropoda, Helicidae). Bulletin du Museum National d'Histoire Naturelle 4, Série 8, section 1, 111115.CrossRefGoogle Scholar
Morand, S. and Daguzan, J. (1986). Contribution a l'etude du parasitisme de l'escargot petit-gris (Helix aspersa Müller): premiers resultats concernant l'acarien Riccardoella limacum (Schrank) et le nematode Alloionema appendiculatum (Schneider). Haliotis 15, 3139.Google Scholar
Morand, S. and Petter, A. J. (1986). Nemhelix bakeri n. gen., n. sp. (Nematoda: Cosmocercinae) parasite de l'appareil génital de Helix aspersa (Gastropoda: Helicidae) en France. Canadian Journal of Zoology 64, 20082011.CrossRefGoogle Scholar
Pearse, A. G. E. (1968). Histochemistry: Theoretical and Applied. Vol. 1. Churchill Livingstone, Edinburgh, UK.Google Scholar
Saitou, N. and Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406425.Google Scholar
Stout, J. D. (1954). The ecology, life history and parasitism of Tetrahymena [Paraglaucoma] rostrata (Kahl) Corliss. Journal of Protozoology 1, 211215.CrossRefGoogle Scholar
Thompson, J. C. (1958). Tetrahymena rostrata as a facultative parasite in the grey garden slug. Virginia Journal of Science 9, 315318.Google Scholar
Van As, J. G. and Basson, L. (2004). Ciliophoran (Ciliophora) parasites of terrestrial gastropods. In Natural Enemies of Terrestrial Molluscs (ed. Barker, G. M.), pp. 559578. CABI Publishing, Wallingford, UK.Google Scholar
Wilson, M. J., Coyne, C. and Glen, D. M. (1998). Low temperatures suppress growth of the ciliate parasite, Tetrahymena rostrata, and pathogenicity to field slugs, Deroceras reticulatum. Biocontrol Science and Technology 8, 181184.CrossRefGoogle Scholar