Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T00:51:36.859Z Has data issue: false hasContentIssue false

Monoclonal IgM rheumatoid factor-like anti-globulins enhance the inhibitory effects of Plasmodium falciparum-specific monoclonal antibodies in vitro

Published online by Cambridge University Press:  06 April 2009

M. K. Stuart
Affiliation:
Department of Veterinary Microbiology, University of Missouri, Columbia, Missouri 65211, USA
T. J. Green
Affiliation:
Department of Veterinary Microbiology, University of Missouri, Columbia, Missouri 65211, USA

Extract

Monoclonal IgM rheumatoid factor-like anti-globulins were produced by in vitro stimulation of naive BALB/c spleen cells with lipopolysaccharide, and by hyperimmunization of mice with merozoites of Plasmodium falciparum, followed by fusion of the spleen cells to mouse myelomas. In vitro, these anti-globulins augmented the inhibitory effects of P. falciparum-specific polyclonal mouse sera and monoclonal IgG1 and IgG2b antibodies by binding to Fc fragments of IgG molecules attached to blood-stage parasites. In some instances, the presence of anti-globulins correlated with an increase in the number of schizonts which failed to disperse merozoites. In other cases, parasitaemia remained low in the absence of the schizont inhibition phenomenon, suggesting that anti-globulins contribute to host cell protection not only by agglutinating merozoites, but also by increasing the density of the antibody coat surrounding the parasites, thus interfering with parasite receptor-erythrocyte ligand interactions. The anti-globulins were not inhibitory when added to parasite cultures containing IgG not specific for P. falciparum. These results may help explain the function of IgM anti-globulins found at elevated serum levels in some patients with malaria or other chronic infectious diseases.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248–54.CrossRefGoogle ScholarPubMed
Campbell, A. M. (1984). Monoclonal antibody technology: the production and characterization of rodent and human hybridomas. In Laboratory Techniques in Biochemistry and Molecular Biology, vol. 13 (ed. Burdon, R. H. & van Knippenberg, P. H.), pp. 158160. New York: Elsevier Science Publishing Company, Inc.Google Scholar
Carson, D. A. (1984). Increase in the complement-fixing ability of murine IgG anti-lymphocyte antibodies by addition of monoclonal IgM rheumatoid factors. Journal of Immunological Methods 68, 103–8.CrossRefGoogle ScholarPubMed
Certa, U., Ghersa, P., Dobeli, H., Matile, H., Kocher, H. P., Shrivastava, I. K., Shaw, A. R. & Perrin, L. H. (1988). Aldolase activity of a Plasmodium falciparum protein with protective properties. Science 240, 1036–8.CrossRefGoogle ScholarPubMed
Clarkson, A. B. & Mellow, G. H. (1981). Rheumatoid factor-like IgM protects previously uninfected rat pups and dams from Trypanosoma lewisi. Science 214, 186–8.CrossRefGoogle ScholarPubMed
Dziarski, R. (1982). Preferential induction of autoantibody secretion in polyclonal activation by peptidoglycan and lipopolysaccharide. I. In vitro studies. Journal of Immunology 128, 1018–25.CrossRefGoogle ScholarPubMed
Green, T. J., Morhardt, M., Brackett, R. G. & Jacobs, R. L. (1981). Serum inhibition of merozoite dispersal from Plasmodium falciparum schizonts: indicator of immune status. Infection and Immunity 31, 1203–8.CrossRefGoogle ScholarPubMed
Green, T. J. & Packer, B. J. (1984). A role for rheumatoid factor enhancement of Plasmodium falciparum schizont inhibition in vitro. Infection and Immunity 46, 668–72.CrossRefGoogle ScholarPubMed
Greenwood, B. M., Muller, A. S. & Valkenburg, H. A. (1971). Rheumatoid factor in Nigerian sera. Clinical and Experimental Immunology 8, 161–73.Google Scholar
Hayzer, D. J. & Jaton, J.-C. (1985). Immunoglobulin M (IgM). In Methods in Enzymology vol. 116 (ed. Colowick, A. P. & Kaplan, N. O.), pp. 2636. New York: Academic Press.Google Scholar
Holder, A. A. (1988). The precursor to major merozoite surface antigens: structure and role in immunity. Progress in Allergy 41, 7297.Google ScholarPubMed
Houba, V. & Allison, A. C. (1966). M-antiglobulins (rheumatoid factor-like globulins) and other gammaglobulins in relation to tropical parasitic infections. Lancet 1, 848–52.CrossRefGoogle ScholarPubMed
Houba, V., Brown, K. N. & Allison, A. C. (1969). Heterophile antibodies, M-antiglobulins and immunoglobulins in experimental trypanosomiasis. Clinical and Experimental Immunology 4, 113.Google ScholarPubMed
Huntley, G. C., Costas, M. C., Williams, R. C. L.erly, A. D. & Watson, R. G. (1966). Anti-gamma-globulin factors in visceral larval migrans. Journal of the American Medical Association 197, 552.CrossRefGoogle Scholar
Jensen, J. B., VanDe Waa, J. A. & Karadsheh, A. J. (1987). Tumor necrosis factor does not induce Plasmodium falciparum crisis forms. Infection and Immunity 55, 1722–4.CrossRefGoogle Scholar
Kawabata, M., Flores, G. Z., Izui, S. & Kobayakawa, T. (1984). IgM rheumatoid factors in Guatemalan onchocerciasis. Transactions of the Royal Society of Tropical Medicine and Hygiene 78, 356–8.CrossRefGoogle ScholarPubMed
Klein, F., Mattern, P. & Meuwissen, J. H. E. T.. (1971). Experimental anti-gamma G-globulins in infectious diseases. In Human Anti-Human Gammaglobulins: Their Specificity and Function (ed. Grubb, R. & Samuelsson, G.) Wenner-Gren Center International Symposium Series, vol. 17, pp. 6370. New York: Pergamon Press.CrossRefGoogle Scholar
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227, 680–5.CrossRefGoogle ScholarPubMed
Lambros, C. & Vanderberg, J. P. (1979). Synchronization of Plasmodium falciparum erythrocytic stages in culture. Journal of Parasitology 65, 418–20.CrossRefGoogle ScholarPubMed
Lee, L. S. & Styles, T. (1984). Production by rat-mouse hybridomas of monoclonal rheumatoid factors and related monoclonal antibodies associated with the immune responses to the infection of Trypanosoma lewisi. Hybridoma 3, 96.Google Scholar
Lehman, J. S., Higashi, G. I., Bassily, S. & Farid, Z. (1972). Rheumatoid factors in Salmonella and Schistosoma infections. Transactions of the Royal Society of Tropical Medicine and Hygiene 66, 125–9.CrossRefGoogle ScholarPubMed
Nemazee, D. A. & Sato, V. L. (1983). Induction of rheumatoid antibodies in the mouse: regulated production of autoantibody in the secondary humoral response. Journal of Experimental Medicine 158, 529–45.CrossRefGoogle ScholarPubMed
Notkins, A. L. (1971). Infectious virus-antibody complexes: interaction with anti-immunoglobulins, complement, and rheumatoid factor. Journal of Experimental Medicine 134, 41s51s.CrossRefGoogle ScholarPubMed
Partanex, P., Turuxex, H. J., Paasivuo, R., Forsblom, E., Suni, J. & Leinikki, P. O. (1983). Identification of antigenic components of Toxoplasma gondii by an immunoblotting technique. Federation of European Biochemical Societies Letters 158, 252–4.CrossRefGoogle Scholar
Peltier, A. & Christian, C. L. (1959). The presence of the ‘rheumatoid factor’ in sera from patients with syphilis. Arthritis and Rheumatism 2, 1.3.0.CO;2-D>CrossRefGoogle ScholarPubMed
Reik, L. M., Maines, S. L., Ryan, D. E., Levin, W., Nadiera, S. & Thomas, P. E. (1987). A simple, non-chromatographic purification procedure for monoclonal antibodies. Journal of Immunological Methods 100, 123–30.CrossRefGoogle ScholarPubMed
Risemberg, A., De Gomez, A. G. & Rife, U. (1969). Agglutinating factor in serum of patients with viral hepatitis. Annals of the Rheumatic Diseases 28, 428.CrossRefGoogle ScholarPubMed
Rivadexeira, E. M., Wasserman, M. & Espinal, C. T. (1983). Separation and concentration of Plasmodium falciparum by Percoll gradients. Journal of Protozoology 30, 367–70.CrossRefGoogle Scholar
Roitt, I., Brostoff, J. & Male, D. (1985). Immunology. St Louis: The C. V. Mosby Company.Google Scholar
Shlomchik, M. J., Nemanzee, D. A., Sato, V. L., van Snick, J., Carson, D. A. & Weigert, M. G. (1986). Variable region sequences of murine IgM anti-IgG monoclonal autoantibodies (rheumatoid factors): a structural explanation for the high frequency of IgM anti-IgG B cells. Journal of Experimental Medicine 165, 407–27.CrossRefGoogle Scholar
Thomas, A. W., Deans, J. A., Mitchell, G. H., Alderson, T. & Cohen, S. (1984). The Fab fragments of monoclonal IgG to a merozoite surface antigen inhibit Plasmodium knowlesi invasion of erythrocytes. Molecular and Biochemical Parasitology 13, 187–99.CrossRefGoogle ScholarPubMed
Trager, W. & Jensen, J. B. (1976). Human malaria parasites in continuous culture. Science 193, 673–5.CrossRefGoogle ScholarPubMed
van Deusen, R. A. (1983). Making hybridomas. In Hybridoma Technology in Agricultural and Veterinary Research (ed. Stern, N. J. & Gamble, H. R.), pp. 1525. New York: Rowman & Allanheld, Publishers.Google Scholar
van Snick, J. L., Stassin, V. & De Lestre, B. (1983). Isotypic and allotypic specificity of mouse rheumatoid factors. Journal of Experimental Medicine 157, 1006–19.CrossRefGoogle ScholarPubMed
van Snick, J. L., van Roost, E., Markowetz, B., Cambiaso, C. L. & Masson, P. L. (1978). Enhancement by IgM rheumatoid factor of in vitro ingestion by macrophages and in vivo clearance of aggregated IgG or antigen-antibody complexes. European Journal of Immunology 8, 279–85.CrossRefGoogle ScholarPubMed
Voller, A., Bidwell, D. E. & Bartlett, A. (1979). The Enzyme-Linked Immunosorbent Assay (ELISA). Alexandria, VA: Dynatech Laboratories.Google Scholar
Wahlgren, M., Perlmann, H., Berzins, K., Bjorkman, A., Larsson, A., Ljungstrom, I., Patarroyo, M. E. & Perlmann, P. (1986). Characterization of the humoral immune response in Plasmodium faciparum malaria. III. Factors influencing the coexpression of antibody isotypes (IgM and IgG-1 to 4). Clinical and Experimental Immunology 63, 343–53.Google Scholar