Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T22:30:05.710Z Has data issue: false hasContentIssue false

Monoclonal antibodies to Leishmania tropica major: specificities and antigen location

Published online by Cambridge University Press:  06 April 2009

A. A. L. de Ibarra
Affiliation:
Division of Experimental Biology, Wellcome Research Laboratories, Beckenham, Kent
J. G. Howard
Affiliation:
Division of Experimental Biology, Wellcome Research Laboratories, Beckenham, Kent
D. Snary
Affiliation:
Department of Immunochemistry, Wellcome Research Laboratories, Beckenham, Kent

Extract

Six murine monoclonal antibodies to Leishmania tropica major have been prepared and the properties of these antibodies studied. Two (WIC 79.3 and 79.7) were L. tropica major species-specific and bound to promastigote cell surfaces, to parasitized macrophages, but not isolated amastigotes. No evidence was found for the production of antibody to the antigenic determinants recognized by WIC 79.3 or 79.7 during L. tropica major infections in mice and hamsters. One antibody (WIC 79.1) bound to sub-cellular organelles of Leishmania species but to a different sub-cellular organelle of Trypanosoma cruzi. Two others bound to the flagellum, one (WIC 79.2) to all Leishmania species, T. cruzi and Trypanosoma brucei, the other (WIC 79.4) only of L. tropica major and L. donovani species. One antibody (WIC 79.5) was directed against an unknown internal antigen found in all Leishmania species and T. cruzi

Type
Research Article
Copyright
Copyright © Cambridge University Press 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anthony, R. L., Cody, T. S. & Constantine, N. T. (1981). Antigenic differentiation of Trypanosoma cruzi and Trypanosoma rangeli by means of monoclonal hybridoma antibodies. American Journal of Tropical Medicine and Hygiene 30, 1192–7.Google Scholar
Arnot, D. E. & Barker, D. C. (1981). Biochemical identification of cutaneous Leishmanias by analysis of kinetoplast DNA II. sequence homologies in Leishmania kDNA. Molecular and Biochemical Parasitology 3, 4756.Google Scholar
Boné, G. J. & Parent, G. (1963). Stearic acid, an essential growth factor for Trypanosoma cruzi. Journal of General Microbiology 31, 261–6.Google Scholar
Camargo, M. E. & Rebonato, C. (1969). Cross-reactivity in fluorescence tests for Trypanosoma and Leishmania antibodies. American Journal of Tropical Medicine and Hygiene 18, 500–5.Google Scholar
Chance, M. L., Peters, W. & Shchlory, L. (1974). Biochemical taxonomy of Leishmania I: observations on DNA. Annals of Tropical Medicine and Parasitology 68, 307–16.Google Scholar
Chang, K. P. (1980). Human cutaneous Leishmania in a mouse macrophage line: propagation and isolation of intracellular parasites. Science 209, 1240–2.Google Scholar
Cross, G. A. M. (1975). Identification, purification and properties of clone-specific glycoprotein antigens constituting the surface coat of Trypanosoma brucei. Parasitology 71, 393417.Google Scholar
Cruise, K. M., Mitchell, G. F., Garcia, E. G. & Anders, R. F. (1981). Hybridoma antibody immunoassays for the detection of parasitic infection: further studies on a monoclonal antibody with immunodiagnostie potential for schistosomiasis japonica. Acta Tropica 38, 437–47.Google Scholar
El-On, J., Bradley, D. J. & Freeman, J. C. (1980). Leishmania donovani: action of excreted factor on hydrolytic enzyme activity of macrophages from mice with genetically different resistance to infection. Experimental Parasitology 49, 167–74.Google Scholar
Galfre, G., Howe, S. C., Milstein, C., Butcher, G. W. & Howard, J. C. (1977). Antibodies to major histocompatibility antigens produced by hybrid cell lines. Nature, London 226, 550–2.Google Scholar
Hammond, D. J., Gutteridge, W. E. & Opperdoes, F. R. (1981). A novel location for two enzymes of de novo pyrimidine biosynthesis in trypanosomes and Leishmania. FEBS Letters 128, 27–9.Google Scholar
Hart, D. T., Vickerman, K. & Coombs, G. H. (1981). A. quick, simple method for purifying Leishmania mexicana amastigotes in large numbers. Parasitology 82, 345–55.Google Scholar
Hendricks, L. D., Wood, D. E. & Hajduk, M. E. (1978). Haemoflagellates: commercially available liquid media for rapid cultivation. Parasitology 76, 309–16.Google Scholar
Holder, A. A. & Freeman, R. R. (1981). Immunisation against blood-stage rodent malaria using purified parasite antigens. Nature, London 294, 361–4.CrossRefGoogle Scholar
Littlefield, J. W. (1964). Selection of hybrids from matings of fibroblasts in vitro and their presumed recombinants. Science 145, 709–10.Google Scholar
Miles, M. A., Lainson, R., Shaw, J. J., Povoa, M. & Souza, A. A. de. (1981). Leishmanias is in Brazil. XV. Biochemical distinction of Leishmania mexicana amazonensis L. braziliensis braziliensis and L. braziliensis guyanenses – aetiological agents of cutaneous leishmaniasis in the Amazon basin of Brazil. Transactions of the Royal Society of Tropical Medicine and Hygiene 75, 524–9.CrossRefGoogle Scholar
Neal, R. A. (1964). Chemotherapy of cutaneous leishmaniasis: Leishmania tropica major infections in mice. Annals of Tropical Medicine and Parasitology 58, 420–30.Google Scholar
Neal, R. A. (1972). Effect of dihydrofolate reductase inhibitors on experimental cutaneous leishmaniasis, with especial emphasis on Leishmania isolates from Latin-America. Revista do Instituto de Medicina Tropical de Sao Paulo 14, 341–51.Google Scholar
Opperdoes, F. R. & Borst, P. (1977). Localization of nine glycolytic enzymes in a microbody-like organelle in Trypanosom brucei: the glycosome. FEBS Letters 80, 360–4.Google Scholar
Pratt, D. M. & David, J. R. (1981). Monoclonal antibodies that distinguish between New World species of Leishmania. Nature, London 291, 581–3.Google Scholar
Pugin, P. & Miescher, P. A. (1979). Lekala-azar. Etude clinique et physiopatholigique a propos d'un noveau cas observe en Suisse. Schweizerische Medizinische Wochenschrift 109, 265–9.Google Scholar
Slutzky, G. M. & Greenblatt, C. L. (1977). Isolation of a carbohydrate-rich immunologically active factor from cultures of Leishmania tropica. FEBS Letters 80, 401–4.Google Scholar
Smith, M. A., Clegg, J. A., Snary, D. & Trejdosiewicz, A. J. (1982). Passive immunization of mice against Schistosoma mansoni with an IgM monoclonal antibody. Parasitology 84, 8391.Google Scholar
Snaky, D. (1980). Trypanosoma cruzi: antigenic invariance of the cell surface glycoprotein. ExperimeTital Parasitology 49, 6877.Google Scholar
Vickebman, K. & Preston, T. M. (1976). Comparative cell biology of the kinetoplastid flagellates. In Biology of the Kinetoplastids, vol. 1 (ed. Lumsden, W. H. R. and Evans, D. A.), pp. 35130. New York and London: Academic Press.Google Scholar
Yoshida, N., Nussenzweig, R. S., Potocnjak, P., Nussenzweig, V. & Aikawa, M. (1980). Hybridoma produces protective antibodies directed against the sporozoite stage of malaria parasite. Science 207, 71–3.Google Scholar