Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T20:48:02.423Z Has data issue: false hasContentIssue false

Molecular genetic characterization of the cervid strain (‘northern form’) of Echinococcus granulosus

Published online by Cambridge University Press:  06 April 2009

J. Bowles
Affiliation:
Molecular Parasitology Unit, Tropical Health Program, Queensland Institute of Medical Research, The Bancroft Centre, 300 Herston Road, Brisbane, Queensland 4029, Australia
D. Blair
Affiliation:
Department of Zoology, James Cook University, Townsville, Queensland 4811, Australia
D. P. McManus
Affiliation:
Molecular Parasitology Unit, Tropical Health Program, Queensland Institute of Medical Research, The Bancroft Centre, 300 Herston Road, Brisbane, Queensland 4029, Australia

Summary

We have used a number of molecular genetic approaches to characterize the cervid strain (‘northern form’) of Echinococcus granulosus. PCR–RFLP analysis of the nuclear ITS1 region of the rDNA repeat can readily distinguish the cervid form from other strains of E. granulosus. The complexity of the RFLP patterns obtained suggests that a number of distinct ITS1 types are present in this strain which may represent an inter-strain E. granulosus hybrid. Mitochondrial CO1 sequence of the cervid genotype was ambiguous at 18 positions and closely resembles a cluster of previously characterized E. granulosus genotypes, G1 (common, domestic sheep)/G2 (Tasmanian sheep)/G3 (buffalo). In contrast, mitochondrial ND1 sequence, although unique, suggests that the cervid form is most similar to strains represented by the G6 (camel)/G7 (pig) genotypes. We assume that the CO1 and ND1 sequences obtained for the cervid genotype are linked in a single mitochondrial genome although this is difficult to explain if conventional molecular genetics of mitochondrial DNA are assumed. Based on its unique ND1 sequence and ITS1 PCR–RFLP pattern, the cervid strain appears to represent a distinct genotype (designated G8) of E. granulosus.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Avise, J. C. & Lansman, R. A. (1983). Polymorphism of mitochondrial DNA in populations of higher animals. In Evolution of Genes and Proteins (ed. Nei, M. & Koehn, R. K.), pp. 147164. Sunderland, USA; Sinauer Associates.Google Scholar
Blair, D. & McManus, D. P. (1989). Restriction enzyme mapping of ribosomal DNA can distinguish between fasciolid (liver fluke) species. Molecular Biochemistry and Parasitology 36, 201–8.CrossRefGoogle ScholarPubMed
Bowles, J., Blair, D. & McManus, D. P. (1992). Genetic variants within the genus Echinococcus identified by mitochondrial sequencing. Molecular Biochemistry and Parasitology 54, 165–74.Google Scholar
Bowles, J. & McManus, D. P. (1993 a). Molecular variation in Echinococcus. Acta Tropica 53, 291305.Google Scholar
Bowles, J. & McManus, D. P. (1993 b). Rapid discrimination of Echinococcus species and strains using a PCR-based method. Molecular Biochemistry and Parasitology 57, 231–9.Google Scholar
Bowles, J. & McManus, D. P. (1993 c). NADH dehydrogenase 1 gene sequences compared for species and strains of the genus Echinococcus. International Journal for Parasitology 23, 969–72.CrossRefGoogle ScholarPubMed
Bowles, J., Van Knapen, F. & McManus, D. P. (1992). Cattle Strain of Echinococcus granulosus and human infection. Lancet 339, 1358.CrossRefGoogle ScholarPubMed
Garey, J. R. & Wolstenholme, D. R. (1989). Platyhelminth mitochondrial DNA: evidence for early evolution origin of a tRNAserAGN that contains a dihydrouridine arm replacement loop, and of serine-specifying AGA and AGG codons. Journal of Molecular Evolution 28, 374–87.CrossRefGoogle ScholarPubMed
Gunderson, J. H., Sogin, M. L., Wollet, G., Hollingdale, M., De La Cruz, V. F., Waters, A. P. & McCutchan, T. F. (1987). Structurally distinct, stage-specific ribosomes occur in Plasmodium. Science 238, 933–7.Google Scholar
Gyllensten, U., Wharton, D., Josefsson, A. & Wilson, A. C. (1991). Paternal inheritance of mitochondrial DNA in mice. Nature, London 352, 255–7.CrossRefGoogle ScholarPubMed
Gyllensten, U., Wharton, D. & Wilson, A. C. (1985). Maternal inheritance of mitochondrial DNA during backcrossing of 2 species of mice. Journal of Heredity 76, 321–4.Google Scholar
Higuchi, R. G. & Ochman, H. (1989). Production of single-stranded DNA templates by exonuclease digestion following the polymerase chain reaction. Nucleic Acids Research 17, 5865.Google Scholar
Hillis, D. M. & Dixon, M. T. (1991). Ribosomal DNA: molecular evolution and phylogenetic inference. Quarterly Review of Biology 66, 411–53.CrossRefGoogle ScholarPubMed
Hillis, D. M., Moritz, C., Porter, C. A. & Baker, R. J. (1991). Evidence for biased gene conversion in concerted evolution of ribosomal DNA. Science 251, 308–10.CrossRefGoogle ScholarPubMed
Hoeh, W. R., Blakely, K. H. & Brown, W. M. (1991). Heteroplasmy suggests limited biparental inheritance ofMytilus mitochondrial DNA. Science 251, 1488–90.Google Scholar
Hope, M., Bowles, J. & McManus, D. P. (1991). A reconsideration of the Echinococcus granulosus strain situation in Australia following RFLP analysis of cystic material. International Journal for Parasitology 21, 471–5.Google Scholar
Hope, M., Bowles, J., Prociv, P. & McManus, D. P. (1992). A genetic comparison of human and wildlife isolates of Echinococcus granulosus in Queensland and the public health implications. Medical Journal of Australia 156, 2730.Google Scholar
Magoulas, A. & Zouros, E. (1993). Restriction-site heteroplasmy in anchovy (Engraulis encrasicolus) indicates incidental biparental inheritance of mitochondrial DNA. Molecular Biology and Evolution 10, 319–25.Google Scholar
Maniatis, T., Fritsch, E. F. & Sambrook, J. (1982). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, New York, USA: Cold Spring Harbor Laboratory.Google Scholar
Okimoto, R., Macfarlane, J. L., Clary, D. O. & Wolstenholme, D. R. (1992). The mitochondrial genomes of two nematodes, Caenorhabditis elegans and Ascaris suum. Genetics 130, 471–98.Google Scholar
Rausch, R. L. (1986). Life-cycle patterns and geographic distribution of Echinococcus species. In The Biology of Echinococcus and Hydatid Disease (ed. Thomson, R. C. A.), pp. 4480. London: George Allen and Unwin.Google Scholar
Rollinson, D., Walker, T. K., Knowles, R. J. & Simpson, A. J. G. (1990). Identification of schistosome hybrids and larval parasites using rRNA probes. Systematic Parasitology 15, 6573.Google Scholar
Saiki, R. K., Scharf, S., Faloona, F., Mullis, K. B., Horn, G. T., Erlich, H. A. & Arnheim, N.(1985). Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anaemia. Science 230, 1350–4.Google Scholar
Sasaki, T., Okazaki, T., Muramatsu, M. & Kominami, R. (1987). Variation among mouse ribosomal RNA genes within and between chromosomes. Molecular Biology and Evolution 4, 594601.Google Scholar
Seperack, P., Slatkin, M. & Arnheim, N. (1988). Linkage disequilibrium in human ribosomal genes: implications for multigene family evolution. Genetics 119, 943–9.CrossRefGoogle ScholarPubMed
Thompson, R. C. A. & Lymbery, A. J. (1988). The nature, extent and significance of variation within the genus Echinococcus. Advances in Parasitology 27, 209–58.Google Scholar
Wachira, T. M., Bowles, J., Zeyhle, E. & McManus, D. P. (1993). Molecular examination of the sympatry and distribution of sheep and camel strains of Echinococcus granulosus in Kenya. American Journal of Tropical Medicine and Hygiene 48, 473–9.Google Scholar
Walker, T. K., Rollinson, D. & Simpson, A. J. G. (1986). Differentiation of Schistosoma haematobium from related species using cloned ribosomal RNA gene probes. Molecular Biochemistry and Parasitology 20, 123–31.CrossRefGoogle ScholarPubMed
Wilson, A. C., Cann, R. L., Carr, S. M., George, M. Jr, Gyllensten, U. B., Helm-Bychowski, K., Higuchi, R. C., Palumbi, S. R., Prager, E. M., Sage, D. & Stoneking, M. (1985). Mitochondrial DNA and two perspectives on evolutionary genetics. Biological Journal of the Linnean Society 26, 375400.CrossRefGoogle Scholar