Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-20T02:48:17.782Z Has data issue: false hasContentIssue false

Molecular characterization of a family of metalloendopeptidases from the intestinal brush border of Haemonchus contortus

Published online by Cambridge University Press:  02 June 2006

G. F. J. NEWLANDS
Affiliation:
Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 OPZ, Scotland
P. J. SKUCE
Affiliation:
Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 OPZ, Scotland
A. J. NISBET
Affiliation:
Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 OPZ, Scotland
D. L. REDMOND
Affiliation:
Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 OPZ, Scotland
S. K. SMITH
Affiliation:
Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 OPZ, Scotland
D. PETTIT
Affiliation:
Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 OPZ, Scotland
W. D. SMITH
Affiliation:
Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 OPZ, Scotland

Abstract

Substantial protection against the economically important parasitic nematode Haemonchus contortus has been achieved by immunizing sheep with a glycoprotein fraction isolated from the intestinal membranes of the worm (H-gal-GP). Previous studies showed that one of the major components of H-gal-GP is a family of at least 4 zinc metalloendopeptidases, designated MEPs 1–4. This paper describes aspects of the molecular architecture of this protease family, including the proteomic analysis of the MEP fraction of the H-gal-GP complex. These enzymes belong to the M13 zinc metalloendopeptidase family (EC 3.4.24.11), also known as neutral endopeptidases or neprilysins. The sequences of MEPs 1 and 3 suggested a typical Type II integral membrane protein structure, whilst MEPs 2 and 4 had putative cleavable signal peptides, typical of secreted proteins. Proteomic analysis of H-gal-GP indicated that the extracellular domain of all 4 MEPs had been cleaved close to the transmembrane region/signal peptide with additional cleavage sites mid-way along the polypeptide. MEP3 was present as a homo-dimer in H-gal-GP, whereas MEP1 or MEP2 formed hetero-dimers with MEP4. It was found that expression of MEP3 was confined to developing 4th-stage larvae and to adult worms, the stages of Haemonchus which feed on blood. MEP-like activity was detected in the H-gal-GP complex over a broad pH range (5–9). Since all 4 MEPs must share a similar microenvironment in the complex, this suggests that each might have a different substrate specificity.

Type
Research Article
Copyright
2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chen, N., Harris, T. W., Antoshechkin, I., Bastiani, C., Bieri, T., Blasiar, D., Bradnam, K., Canaran, P., Chan, J., Chen, C. K., Chen, W. J., Cunningham, F., Davis, P., Kenny, E., Kishore, R., Lawson, D., Lee, R., Muller, H. M., Nakamura, C., Pai, S., Ozersky, P., Petcherski, A., Rogers, A., Sabo, A., Schwarz, E. M., Van Auken, K., Wang, Q., Durbin, R., Spieth, J., Sternberg, P. W. and Stein, L. D. ( 2005). WormBase: a comprehensive data resource for Caenorhabditis biology and genomics. Nucleic Acids Research 33, D383D389.Google Scholar
Drysdale, R. A. and Crosby, M. A. ( 2005). FlyBase: genes and gene models. Nucleic Acids Research 33, D390D395.Google Scholar
Erdos, E. G., Wagner, B., Harbury, C. B., Painter, R. G., Skidgel, R. A. and Fa, X. G. ( 1989). Down-regulation and inactivation of neutral endopeptidase 24.11 (enkephalinase) in human neutrophils. Journal of Biological Chemistry 264, 1451914523.Google Scholar
Francis, F., Hennig, S., Korn, B., Reinhardt, R., De Jong, P., Poustka, A., Lehrach, H., Rowe, P. S. N., Goulding, J. N., Summerfield, T., Mountford, R., Read, A. P., Popowska, E., Pronicka, E., Davies, K. E., O'Riordan, J. L. H., Econs, M. J., Nesbitt, T., Drezner, M. K., Oudet, C., Pannetier, S., Hanauer, A., Strom, T. M. and Meindl, A. ( 1995). A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. Nature Genetics 11, 130136.CrossRefGoogle Scholar
Gade, G. ( 1997). The explosion of structural information on insect neuropeptides. Fortschritte der Chemie Organischer Naturstoffe 71, 1128.CrossRefGoogle Scholar
Geldhof, P., Newlands, G. F., Nyame, K., Cummings, R., Smith, W. D. and Knox, D. P. ( 2005). Presence of the LDNF glycan on the host-protective H-gal-GP fraction from Haemonchus contortus. Parasite Immunology 27, 5560.CrossRefGoogle Scholar
Gum, J. R. Jr., Hicks, J. W., Toribara, N. W., Siddiki, B. and Kim, Y. S. ( 1994). Molecular cloning of human intestinal mucin (MUC2) cDNA. Identification of the amino terminus and overall sequence similarity to prepro-von Willebrand factor. Journal of Biological Chemistry 269, 24402446.Google Scholar
Haslam, S. M., Coles, G. C., Munn, E. A., Smith, T. S., Smith, H. F., Morris, H. R. and Dell, A. ( 1996). Haemonchus contortus glycoproteins contain N-linked oligosaccharides with novel highly fucosylated core structures. Journal of Biological Chemistry 271, 3056130570.CrossRefGoogle Scholar
Isaac, R. E. ( 1988). Neuropeptide-degrading endopeptidase activity of locust (Schistocerca gregaria) synaptic membranes. The Biochemical Journal 255, 843847.CrossRefGoogle Scholar
Isaac, R. E., Siviter, R. J., Stancombe, P., Coates, D. and Shirras, A. D. ( 2000). Conserved roles for peptidases in the processing of invertebrate neuropeptides. Biochemical Society Transactions 28, 460464.CrossRefGoogle Scholar
Jensen, O. N., Larsen, M. R. and Roepstorff, P. ( 1998). Mass spectrometric identification and microcharacterization of proteins from electrophoretic gels: strategies and applications. Proteins Suppl. 2, 7489.3.0.CO;2-B>CrossRefGoogle Scholar
Jentoft, N. ( 1990). Why are proteins O-glycosylated? Trends in Biochemical Sciences 15, 291294.Google Scholar
Kall, L., Krogh, A. and Sonnhammer, E. L. ( 2004). A combined transmembrane topology and signal peptide prediction method. Journal of Molecular Biology 338, 10271036.CrossRefGoogle Scholar
Kerr, M. A. and Kenny, A. J. ( 1974). The purification and specificity of a neutral endopeptidase from rabbit kidney brush border. The Biochemical Journal 137, 477488.CrossRefGoogle Scholar
Knox, D. P., Smith, S. K. and Smith, W. D. ( 1999). Immunization with an affinity purified protein extract from the adult parasite protects lambs against infection with Haemonchus contortus. Parasite Immunology 21, 201210.CrossRefGoogle Scholar
Lee, S., Russo, D. C., Pu, J., Ho, M. and Redman, C. M. ( 2000). The mouse Kell blood group gene (Kel): cDNA sequence, genomic organization, expression, and enzymatic function. Immunogenetics 52, 5362.CrossRefGoogle Scholar
Li, C., Kim, K. and Nelson, L. S. ( 1999). FMRFamide-related neuropeptide gene family in Caenorhabditis elegans. Brain Research 848, 2634.CrossRefGoogle Scholar
Liddell, S. and Knox, D. P. ( 1998). Extracellular and cytoplasmic Cu/Zn superoxide dismutases from Haemonchus contortus. Parasitology 116, 383394.CrossRefGoogle Scholar
Longbottom, D., Redmond, D. L., Russell, M., Liddell, S., Smith, W. D. and Knox, D. P. ( 1997). Molecular cloning and characterisation of a putative aspartate proteinase associated with a gut membrane protein complex from adult Haemonchus contortus. Molecular and Biochemical Parasitology 88, 6372.CrossRefGoogle Scholar
Malfroy, B., Swerts, J. P., Guyon, A., Roques, B. P. and Schwartz, J. C. ( 1978). High-affinity enkephalin-degrading peptidase in brain is increased after morphine. Nature, London 276, 523526.CrossRefGoogle Scholar
Matsas, R., Kenny, A. J. and Turner, A. J. ( 1984). The metabolism of neuropeptides. The hydrolysis of peptides, including enkephalins, tachykinins and their analogues, by endopeptidase-24.11. The Biochemical Journal 223, 433440.Google Scholar
Newton, S. E. and Munn, E. A. ( 1999). The development of vaccines against gastrointestinal nematode parasites, particularly Haemonchus contortus. Parasitology Today 15, 116122.CrossRefGoogle Scholar
Rawlings, N. D., Tolle, D. P. and Barrett, A. J. ( 2004). MEROPS: the peptidase database. Nucleic Acids Research 32, D160D164.CrossRefGoogle Scholar
Redmond, D. L., Knox, D. P., Newlands, G. and Smith, W. D. ( 1997). Molecular cloning and characterisation of a developmentally regulated putative metallopeptidase present in a host protective extract of Haemonchus contortus. Molecular and Biochemical Parasitology 85, 7787.CrossRefGoogle Scholar
Sajid, M. and Isaac, R. E. ( 1995). Identification and properties of a neuropeptide-degrading endopeptidase (neprilysin) of Ascaris suum muscle. Parasitology 111, 599608.CrossRefGoogle Scholar
Skuce, P. J., Redmond, D. L., Liddell, S., Stewart, E. M., Newlands, G. F., Smith, W. D. and Knox, D. P. ( 1999). Molecular cloning and characterization of gut-derived cysteine proteinases associated with a host protective extract from Haemonchus contortus. Parasitology 119, 405412.CrossRefGoogle Scholar
Smith, S. K., Pettit, D., Newlands, G. F., Redmond, D. L., Skuce, P. J., Knox, D. P. and Smith, W. D. ( 1999). Further immunization and biochemical studies with a protective antigen complex from the microvillar membrane of the intestine of Haemonchus contortus. Parasite Immunology 21, 187199.CrossRefGoogle Scholar
Smith, T. S., Graham, M., Munn, E. A., Newton, S. E., Knox, D. P., Coadwell, W. J., McMichael-Phillips, D., Smith, H., Smith, W. D. and Oliver, J. J. ( 1997). Cloning and characterization of a microsomal aminopeptidase from the intestine of the nematode Haemonchus contortus. Biochimica et Biophysica Acta 1338, 295306.CrossRefGoogle Scholar
Smith, W. D., Newlands, G. F., Smith, S. K., Pettit, D. and Skuce, P. J. ( 2003 a). Metalloendopeptidases from the intestinal brush border of Haemonchus contortus as protective antigens for sheep. Parasite Immunology 25, 313323.Google Scholar
Smith, W. D., Skuce, P. J., Newlands, G. F., Smith, S. K. and Pettit, D. ( 2003 b). Aspartyl proteases from the intestinal brush border of Haemonchus contortus as protective antigens for sheep. Parasite Immunology 25, 521530.Google Scholar
Smith, W. D., Smith, S. K. and Murray, J. M. ( 1994). Protection studies with integral membrane fractions of Haemonchus contortus. Parasite Immunology 16, 231241.CrossRefGoogle Scholar
Smith, W. D., Smith, S. K., Pettit, D., Newlands, G. F. and Skuce, P. J. ( 2000). Relative protective properties of three membrane glycoprotein fractions from Haemonchus contortus. Parasite Immunology 22, 6371.CrossRefGoogle Scholar
Symons, L. E. A. and Steel, J. W. ( 1978). Pathogenesis of the loss of production in gastrointestinal parasitism. In The Epidemiology and Control of Gastrointestinal Parasites of Sheep in Australia ( ed. Donald, A. D., Southcott, W. H. and Dineen, J. K.), pp. 922. CSIRO Publications, East Melbourne, Victoria, Australia.
van Wyk, J. A., Malan, F. S. and Randles, J. L. ( 1997). How long before resistance makes it impossible to control some field strains of Haemonchus contortus in South Africa with any of the modern anthelmintics? Veterinary Parasitology 70, 111122.Google Scholar
von Jagow, G. and Shägger, H. ( 1994). A Practical Guide to Membrane Protein Purification. Academic Press, London.
Waller, P. J., Echevarria, F., Eddi, C., Maciel, S., Nari, A. and Hansen, J. W. ( 1996). The prevalence of anthelmintic resistance in nematode parasites of sheep in southern Latin America: general overview. Veterinary Parasitology 62, 181187.CrossRefGoogle Scholar
Williamson, A. L., Lecchi, P., Turk, B. E., Choe, Y., Hotez, P. J., McKerrow, J. H., Cantley, L. C., Sajid, M., Craik, C. S. and Loukas, A. ( 2004). A multi-enzyme cascade of hemoglobin proteolysis in the intestine of blood-feeding hookworms. Journal of Biological Chemistry 279, 3595035957.CrossRefGoogle Scholar
Yatsuda, A. P., Krijgsveld, J., Cornelissen, A. W., Heck, A. J. and de Vries, E. ( 2003). Comprehensive analysis of the secreted proteins of the parasite Haemonchus contortus reveals extensive sequence variation and differential immune recognition. Journal of Biological Chemistry 278, 1694116951.CrossRefGoogle Scholar