Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T20:46:19.513Z Has data issue: false hasContentIssue false

Mechanisms underlying reduced expulsion of a murine nematode infection during protein deficiency

Published online by Cambridge University Press:  02 October 2007

T. TU
Affiliation:
School of Dietetics and Human Nutrition, McGill University (Macdonald Campus) 21, 111 Lakeshore Road, Ste-Anne de Bellevue, QC H9X 3V9, Canada
K. G. KOSKI
Affiliation:
School of Dietetics and Human Nutrition, McGill University (Macdonald Campus) 21, 111 Lakeshore Road, Ste-Anne de Bellevue, QC H9X 3V9, Canada
M. E. SCOTT*
Affiliation:
Institute of Parasitology, McGill University (Macdonald Campus) 21, 111 Lakeshore Road, Ste-Anne de Bellevue, QC H9X 3V9, Canada
*
*Corresponding author: Institute of Parasitology, McGill University (Macdonald Campus), 21, 111 Lakeshore Road, Ste-Anne de Bellevue, QC H9X 3V9, Canada. Tel: +514 398 7996. Fax: +514 398 7857. E-mail: [email protected]

Summary

Balb/c mice infected with the gastrointestinal nematode Heligmosomoides bakeri were fed protein sufficient (PS, 24%) or deficient (PD, 3%) diets to investigate whether diet, infection or dose of larval challenge (0, 100 or 200 larvae) influenced gut pathophysiology and inflammation. Among the PS mice, worms were more posteriorad in the intestine of mice infected with 200 compared with 100 larvae, suggesting active expulsion in the more heavily infected mice. This was consistent with the positive correlation between worm numbers and fluid leakage in PS mice; similar patterns were not detected in the PD mice. Infection also induced villus atrophy, which was more pronounced in PS than in PD mice. Our cytokine screening array indicated that infection in PD mice elevated a wide range of pro-inflammatory cytokines and chemokines. Whereas serum leptin concentrations were higher in PD mice, monocyte chemotactic protein-5 (MCP-5) in serum increased with increasing larval dose and concentrations were lower in PD than PS mice. We suggest that elevated MCP-5 together with villus atrophy may contribute to the apparent dose-dependent expulsion of H. bakeri from PS mice but that delayed expulsion in PD mice appeared related to a predominant Th1 cytokine profile that may be driven by leptin.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anthony, R. M., Urban, J. F. Jr., Alem, F., Hamed, H. A., Rozo, C. T., Boucher, J. L., Van Rooijen, N. and Gause, W. C. (2006). Memory T(H)2 cells induce alternatively activated macrophages to mediate protection against nematode parasites. Nature Medicine 12, 955960.CrossRefGoogle ScholarPubMed
Artis, D., Wang, M. L., Keilbaugh, S. A., He, W., Brenes, M., Swain, G. P., Knight, P. A., Donaldson, D. D., Lazar, M. A., Miller, H. R., Schad, G. A., Scott, P. and Wu, G. D. (2004). RELMbeta/FIZZ2 is a goblet cell-specific immune-effector molecule in the gastrointestinal tract. Proceedings of the National Academy of Sciences, USA 101, 1359613600.CrossRefGoogle ScholarPubMed
Au Yeung, K. J., Smith, A., Zhao, A., Madden, K. B., Elfrey, J., Sullivan, C., Levander, O., Urban, J. F. and Shea-Donohue, T. (2005). Impact of vitamin E or selenium deficiency on nematode-induced alterations in murine intestinal function. Experimental Parasitology 109, 201208.CrossRefGoogle ScholarPubMed
Badaloo, A., Boyne, M., Reid, M., Persaud, C., Forrester, T., Millward, D. J. and Jackson, A. A. (1999). Dietary protein growth and urea kinetics in severely malnourished children and during recovery. Journal of Nutrition 129, 969979.CrossRefGoogle ScholarPubMed
Bansemir, A. D. and Sukhdeo, M. V. (1996). Villus length influences habitat selection by Heligmosomoides polygyrus. Parasitology 113, 311316.CrossRefGoogle ScholarPubMed
Behnke, J. M. and Parish, H. A. (1979). Nematospiroides dubius: arrested development of larvae in immune mice. Experimental Parasitology 47, 116127.Google Scholar
Behnke, J. M. and Robinson, M. (1985). Genetic control of immunity to Nematospiroides dubius: a 9-day anthelminthic abbreviated immunizing regime which separated weak and strong responder strains of mice. Parasite Immunology 7, 235253.CrossRefGoogle ScholarPubMed
Berclaz, P. Y., Benedek, C., Jequier, E. and Schutz, Y. (1996). Changes in protein turnover and resting energy expenditure after treatment of malaria in Gambian children. Pediatric Research 39, 401409.CrossRefGoogle ScholarPubMed
Biedermann, T., Kneilling, M., Mailhammer, R., Maier, K., Sander, C. A., Kollias, G., Kunkel, S. L., Hultner, L. and Rocken, M. (2000). Mast cells control neutrophil recruitment during T cell-mediated delayed-type hypersensitivity reactions through tumor necrosis factor and macrophage inflammatory protein 2. The Journal of Experimental Medicine 192, 14411452.CrossRefGoogle Scholar
Bradley, P. P., Priebat, D. A., Christensen, R. D. and Rothstein, G. (1982). Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. The Journal of Investigative Dermatology 78, 206209.CrossRefGoogle ScholarPubMed
Busso, N., So, A., Chobaz-Peclat, V., Morard, C., Martinez-Soria, E., Talabot-Ayer, D. and Gabay, C. (2002). Leptin signaling deficiency impairs humoral and cellular immune responses and attenuates experimental arthritis. Journal of Immunology 168, 875882.CrossRefGoogle ScholarPubMed
Cable, J., Harris, P. D., Lewis, J. W. and Behnke, J. M. (2006). Molecular evidence that Heligmosomoides polygyrus from laboratory mice and wood mice are separate species. Parasitology 133, 111122.CrossRefGoogle ScholarPubMed
Cai, X. Y., Gommoll, C. P. Jr., Justice, L., Narula, S. K. and Fine, J. S. (1998). Regulation of granulocyte colony-stimulating factor gene expression by interleukin-17. Immunology Letters 62, 5158.CrossRefGoogle ScholarPubMed
Cakir, B., Bozkurt, A., Ercan, F. and Yegen, B. C. (2004). The anti-inflammatory effect of leptin on experimental colitis: involvement of endogenous glucocorticoids. Peptides 25, 95104.CrossRefGoogle ScholarPubMed
Canadian Council on Animal Care. (1993). Guide to the Care and Use of Experimental Animals. Ottawa, Canada.Google Scholar
Cho, S. J., Kang, M. J., Homer, R. J., Kang, H. R., Zhang, X., Lee, P. J., Elias, J. A. and Lee, C. G. (2006). Role of early growth response-1 (Egr-1) in interleukin-13-induced inflammation and remodeling. The Journal of Biological Chemistry 281, 81618168.CrossRefGoogle ScholarPubMed
Cliffe, L. J., Humphreys, N. E., Lane, T. E., Potten, C. S., Booth, C. and Grencis, R. K. (2005). Accelerated intestinal epithelial cell turnover: a new mechanism of parasite expulsion. Science 308, 14631465.CrossRefGoogle ScholarPubMed
Colombo, J. P., Cervantes, H., Kokorovic, M., Pfister, U. and Perritaz, R. (1992). Effect of different protein diets on the distribution of amino acids in plasma, liver and brain in the rat. Annals of Nutrition and Metabolism 36, 2333.CrossRefGoogle ScholarPubMed
Cypess, R. H., Lucia, H. L., Dunsford, H. A. and Enriquez, F. J. (1988). The tissue reactions of mice to infection with Heligmosomoides polygyrus. Journal of Helminthology 62, 6976.CrossRefGoogle Scholar
Deo, M. G., Sood, S. K. and Ramalingaswami, V. (1965). Experimental protein deficiency. Archives of Pathology 80, 1423.Google Scholar
Deschepper, K. and De Groote, G. (1995). Effect of dietary protein, essential and non-essential amino acids on the performance and carcass composition of male broiler chickens. British Poultry Science 36, 229245.CrossRefGoogle Scholar
Dignassn, A. U. (2001). Mechanisms and modulation of intestinal epithelial repair. Inflammatory Bowel Diseases 7, 6877.Google Scholar
Du, F., Higginbotham, D. A. and White, B. D. (2000). Food intake, energy balance and serum leptin concentrations in rats fed low-protein diets. Journal of Nutrition 130, 514521.CrossRefGoogle ScholarPubMed
Dudley, M. A., Wykes, L., Dudley, A. W. Jr., Fiorotto, M., Burrin, D. G., Rosenberger, J., Jahoor, F. and Reeds, P. J. (1997). Lactase phlorizin hydrolase synthesis is decreased in protein-malnourished pigs. Journal of Nutrition 127, 687693.CrossRefGoogle ScholarPubMed
Faggioni, R., Feingold, K. R. and Grunfeld, C. (2001). Leptin regulation of the immune response and the immunodeficiency of malnutrition. The FASEB Journal 15, 25652571.Google Scholar
Fakae, B. B., Harrison, L. J. and Sewell, M. M. (2000). The intensity and duration of primary Heligmosomoides polygyrus infection in TO mice modify acquired immunity to secondary challenge. Journal of Helminthology 74, 225231.CrossRefGoogle ScholarPubMed
Fenton, J. I., Hursting, S. D., Perkins, S. N. and Hord, N. G. (2007). Leptin induces an Apc genotype-associated colon epithelial cell chemokine production pattern associated with macrophage chemotaxis and activation. Carcinogenesis 28, 455464.CrossRefGoogle ScholarPubMed
Finkelman, F. D., Shea-Donohue, T., Goldhill, J., Sullivan, C. A., Morris, S. C., Madden, K. B., Gause, W. C. and Urban, J. F. Jr. (1997). Cytokine regulation of host defense against parasitic gastrointestinal helminths: lessons from studies with rodent models. Annual Review of Immunology 15, 505533.CrossRefGoogle ScholarPubMed
Flier, J. S. (1997). Leptin expression and action: new experimental paradigms. Proceedings of the National Academy of Sciences, USA 94, 42424245.CrossRefGoogle ScholarPubMed
Gause, W. C., Urban, J. and Stadecker, M. J. (2003). The immune response to parasitic helminths: insights from murine models. Trends in Immunology 24, 269277.CrossRefGoogle ScholarPubMed
Gay, J., Fioramonti, J., Garcia-Villar, R. and Bueno, L. (2000). Development and sequels of intestinal inflammation in nematode-infected rats: role of mast cells and capsaicin-sensitive afferents. Neuroimmunomodulation 8, 171178.CrossRefGoogle ScholarPubMed
Golden, M. H. (1982). Transport proteins as indices of protein status. The American Journal of Clinical Nutrition 35, 11591165.CrossRefGoogle ScholarPubMed
Golden, M. H., Waterlow, J. C. and Picou, D. (1977). Protein turnover synthesis and breakdown before and after recovery from protein-energy malnutrition. Clinical Science and Molecular Medicine 53, 473477.Google ScholarPubMed
Ing, R., Su, Z., Scott, M. E. and Koski, K. G. (2000). Suppressed T helper 2 immunity and prolonged survival of a nematode parasite in protein malnourished mice. Proceedings of the National Academy of Sciences, USA 97, 70787083.CrossRefGoogle ScholarPubMed
Jahoor, F., Bhattiprolu, S., Del Rosario, M., Burrin, D., Wykes, L. and Frazer, M. (1996). Chronic protein deficiency differentially affects the kinetics of plasma proteins in young pigs. Journal of Nutrition 126, 14891495.CrossRefGoogle ScholarPubMed
Khan, W. I., Blennerhasset, P. A., Varghese, A. K., Chowdhury, S. K., Omsted, P., Deng, Y. and Collins, S. M. (2002). Intestinal nematode infection ameliorates experimental colitis in mice. Infection and Immunity 70, 59315937.CrossRefGoogle ScholarPubMed
Khan, W. I. and Collins, S. M. (2004). Immune-mediated alteration in gut physiology and its role in host defence in nematode infection. Parasite Immunology 26, 319326.CrossRefGoogle ScholarPubMed
Khan, W. I., Richard, M., Akiho, H., Blennerhasset, P. A., Humphreys, N. E., Grencis, R. K., Van Snick, J. and Collins, S. M. (2003). Modulation of intestinal muscle contraction by interleukin-9 (IL-9) or IL-9 neutralization: correlation with worm expulsion in murine nematode infections. Infection and Immunity 71, 24302438.CrossRefGoogle ScholarPubMed
Klein, M., Paul, R., Angele, B., Popp, B., Pfister, H. W. and Koedel, U. (2006). Protein expression pattern in experimental pneumococcal meningitis. Microbes and Infection 8, 974983.Google Scholar
Lawrence, C. E., Kennedy, M. W. and Garside, P. (2001). Gut immunopathology in helminth infections-paradigm lost? In Parasitic Nematodes (ed. Kennedy, M. W. and Harnett, W.), pp. 373397. CAB International, New York.Google Scholar
Leech, M. D. and Grencis, R. K. (2006). Induction of enhanced immunity to intestinal nematodes using IL-9-producing dendritic cells. Journal of Immunology 176, 25052511.CrossRefGoogle ScholarPubMed
Lord, G. M., Matarese, G., Howard, J. K., Baker, R. J., Bloom, S. R. and Lechler, R. I. (1998). Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature, London 394, 897901.Google Scholar
Madden, K. B., Whitman, L., Sullivan, C., Gause, W. C., Urban, J., Katona, I. M., Finkelman, F. D. and Shea-Donohue, T. (2002). Role of STAT6 and mast cells in IL-4- and IL-13-induced alterations in murine intestinal epithelial cell function. Journal of Immunology 169, 44174422.CrossRefGoogle ScholarPubMed
McDermott, J. R., Bartram, R. E., Knight, P. A., Miller, H. R., Garrod, D. R. and Grencis, R. K. (2003). Mast cells disrupt epithelial barrier function during enteric nematode infection. Proceedings of the National Academy of Sciences, USA 100, 77617766.Google Scholar
Meyer, J. H. (1958). Interactions of dietary fiber and protein on food intake and body composition of growing rats. The American Journal of Physiology 193, 488494.CrossRefGoogle ScholarPubMed
Mir, A., Benahmed, D., Igual, R., Borras, R., O'Connor, J. E., Moreno, M. J. and Rulld, S. (2006). Eosinophil-selective mediators in human strongyloidiasis. Parasite Immunology 28, 397400.Google Scholar
Morimoto, M., Morimoto, M., Whitmire, J., Xiao, S., Anthony, R. M., Mirakami, H., Star, R. A., Urban, J. F. Jr. and Gause, W. C. (2004). Peripheral CD4 T cells rapidly accumulate at the host: parasite interface during an inflammatory Th2 memory response. Journal of Immunology 172, 24242430.CrossRefGoogle ScholarPubMed
NRC. (1995). Nutrient Requirements of Laboratory Animals, 4th Edn. National Research Council, National Academy of Sciences, Washington, D.C.Google Scholar
Ohishi, I. and Odagiri, Y. (1984). Histopathological effect of botulinum C2 toxin on mouse intestines. Infection and Immunity 43, 5458.Google Scholar
Rothwell, N. J. and Stock, M. J. (1987). Influence of carbohydrate and fat intake on diet-induced thermogenesis and brown fat activity in rats fed low protein diets. Journal of Nutrition 117, 17211726.CrossRefGoogle Scholar
Ruth, J. H., Warmington, K. S., Shang, X., Lincoln, P., Evanoff, H., Kunkel, S. L. and Chensue, S. W. (2000). Interleukin 4 and 13 participation in mycobacterial (type-1) and schistosomal (type-2) antigen-elicited pulmonary granuloma formation: multiparameter analysis of cellular recruitment chemokine expression and cytokine networks. Cytokine 12, 432444.CrossRefGoogle ScholarPubMed
Sarafi, M. N., Garcia-Zepeda, E. A., MacLean, J. A., Charo, I. F. and Luste, A. D. (1997). Murine monocyte chemoattractant protein (MCP)-5: a novel CC chemokine that is a structural and functional homologue of human MCP-1. The Journal of Experimental Medicine 185, 99109.Google Scholar
Shea-Donohue, T., Sullivan, C., Finkelman, F. D., Madden, K. B., Morris, S. C., Goldhill, J., Pineiro-Carrero, V. and Urban, J. (2001). The role of IL-4 in Heligmosomoides polygyrus-induced alterations in murine intestinal epithelial cell function. Journal of Immunology 167, 22342239.Google Scholar
Singhal, A., Farooqi, I. S., O'Rahilly, S., Cole, T. J., Fewtrell, M. and Lucas, A. (2002). Early nutrition and leptin concentrations in later life. American Journal of Clinical Nutrition 75, 993999.Google Scholar
Solaiman, D., Jonah, M. M., Miyazaki, W., Ho, G. and Bhattacharyya, M. H. (2001). Increased metallothionein in mouse liver, kidneys, and duodenum during lactation. The Journal of Toxicological Sciences 60, 184192.Google Scholar
Swick, R. W. and Gribskov, C. L. (1983). The effect of dietary protein levels on diet-induced thermogenesis in the rat. Journal of Nutrition 113, 22892294.CrossRefGoogle ScholarPubMed
Trinchieri, G. (1998). Interleukin-12: a cytokine at the interface of inflammation and immunity. Advances in Immunology 70, 83243.Google Scholar
Tu, T., Koski, K. G., Wykes, L. J. and Scott, M. E. (2007). Re-feeding rapidly restores protection against Heligmosomoides bakeri (Nematoda) in protein-deficient mice. Parasitology 134, 899909.CrossRefGoogle ScholarPubMed
Urban, J. F. Jr., Maliszewski, C. R., Madden, K. B., Katona, I. M. and Finkelman, F. D. (1995). IL-4 treatment can cure established gastrointestinal nematode infections in immunocompetent and immunodeficient mice. Journal of Immunology 154, 46754684.CrossRefGoogle ScholarPubMed
Urban, J. F. Jr., Noben-Trauth, N., Donaldson, D. D., Madden, K. B., Morris, S. C., Collins, M. and Finkelman, F. D. (1998). IL-13 IL-4Ralpha and Stat6 are required for the expulsion of the gastrointestinal nematode parasite Nippostrongylus brasiliensis. Immunity 8, 255264.Google Scholar
Vallance, B. A., Blennerhassett, P. A. and Collins, S. M. (1997). Increased intestinal muscle contractility and worm expulsion in nematode-infected mice. The American Journal of Physiology 272, G321G327.Google Scholar
Venkova, K. and Greenwood-van Meerveld, B. (2006). Long-lasting changes in small intestinal transport following the recovery from Trichinella spiralis infection. Neurogastroenterology and Motility 18, 234242.Google Scholar
Webster, A. J. (1993). Energy partitioning, tissue growth and appetite control. The Proceedings of the Nutrition Society 52, 6976.CrossRefGoogle ScholarPubMed
Wykes, L. J., Fiorotto, M., Burrin, D. G., Del Rosario, M., Frazer, M. E., Pond, W. G. and Jaboor, F. (1996). Chronic low protein intake reduces tissue protein synthesis in a pig model of protein malnutrition. Journal of Nutrition 126, 14811488.CrossRefGoogle Scholar
Zhao, A., McDermott, J., Urban, J., Gause, W., Madden, K. B., Yeung, K. A., Morris, S. C., Finkelman, F. D. and Shea-Donohue, T. (2003). Dependence of IL-4, IL-13 and nematode-induced alterations in murine small intestinal smooth muscle contractility on stat6 and enteric nerves. Journal of Immunology 171, 948954.CrossRefGoogle ScholarPubMed
Zhao, X. Q., Jorgensen, H., Gabert, V. M. and Eggum, B. O. (1996). Energy metabolism and protein balance in growing rats housed in 18 degree C or 28 degree C environments and fed different levels of dietary protein. Journal of Nutrition 126, 20362043.Google Scholar
Zou, W., Coulomb, A., Venet, A., Foussat, A., Berrebi, D., Beyer, C., Crevon, M. C., Minty, A., Couedel-Courteille, A., Vivier, E., Capron, F., Galanaud, P. and Emilie, D. (1998). Administration of interleukin 13 to simian immunodeficiency virus-infected macaques: induction of intestinal epithelial atrophy. AIDS Research and Human Retroviruses 14, 775783.CrossRefGoogle ScholarPubMed