Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T07:16:47.421Z Has data issue: false hasContentIssue false

Malarial (Plasmodium falciparum) dihydrofolate reductase-thymidylate synthase: structural basis for antifolate resistance and development of effective inhibitors

Published online by Cambridge University Press:  01 November 2004

Y. YUTHAVONG
Affiliation:
National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Science Park, 113 Phaholyothin Road, Pathumthani 12120, Thailand
J. YUVANIYAMA
Affiliation:
Center for Protein Structure and Function and Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
P. CHITNUMSUB
Affiliation:
National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Science Park, 113 Phaholyothin Road, Pathumthani 12120, Thailand
J. VANICHTANANKUL
Affiliation:
National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Science Park, 113 Phaholyothin Road, Pathumthani 12120, Thailand
S. CHUSACULTANACHAI
Affiliation:
National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Science Park, 113 Phaholyothin Road, Pathumthani 12120, Thailand
B. TARNCHOMPOO
Affiliation:
National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Science Park, 113 Phaholyothin Road, Pathumthani 12120, Thailand
T. VILAIVAN
Affiliation:
Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
S. KAMCHONWONGPAISAN
Affiliation:
National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Science Park, 113 Phaholyothin Road, Pathumthani 12120, Thailand

Abstract

Dihydrofolate reductase-thymidylate synthase (DHFR-TS) from Plasmodium falciparum, a validated target for antifolate antimalarials, is a dimeric enzyme with interdomain interactions significantly mediated by the junction region as well as the Plasmodium-specific additional sequences (inserts) in the DHFR domain. The X-ray structures of both the wild-type and mutant enzymes associated with drug resistance, in complex with either a drug which lost, or which still retains, effectiveness for the mutants, reveal features which explain the basis of drug resistance resulting from mutations around the active site. Binding of rigid inhibitors like pyrimethamine and cycloguanil to the enzyme active site is affected by steric conflict with the side-chains of mutated residues 108 and 16, as well as by changes in the main chain configuration. The role of important residues on binding of inhibitors and substrates was further elucidated by site-directed and random mutagenesis studies. Guided by the active site structure and modes of inhibitor binding, new inhibitors with high affinity against both wild-type and mutant enzymes have been designed and synthesized, some of which have very potent antimalarial activities against drug-resistant P. falciparum bearing the mutant enzymes.

Type
Review Article
Copyright
2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

BEARD, W. A., APPLEMAN, J. R., HUANG, S., DELCAMP, T. J., FREISHEIM, J. H. & BLAKLEY, R. L. ( 1991). Role of the conserved active site residue tryptophan-24 of human dihydrofolate reductase as revealed by mutagenesis. Biochemistry 30, 14321440.CrossRefGoogle Scholar
BENKOVIC, S. J. & HAMMES-SCHIFFER, S. ( 2003). A perspective on enzyme catalysis. Science 301, 11961202.CrossRefGoogle Scholar
BZIK, D. J., LI, W.-B., HORII, T. & INSELBURG, J. ( 1987). Molecular cloning and sequence analysis of the Plasmodium falciparum dihydrofolate reductase-thymidylate synthase gene. Proceedings of the National Academy of Sciences, USA 84, 83608364.CrossRefGoogle Scholar
CHUSACULTANACHAI, S., THIENSATHIT, P., TARNCHOMPOO, B., SIRAWARAPORN, W. & YUTHAVONG, Y. ( 2002). Novel antifolate resistant mutations of Plasmodium falciparum dihydrofolate reductase selected in Escherichia coli. Molecular and Biochemical Parasitology 120, 6172.CrossRefGoogle Scholar
COWMAN, A. F., MORRY, M. J., BIGGS, B. A., CROSS, G. A. M. & FOOTE, S. ( 1988). Amino acid changes linked to pyrimethamine resistance in the dihydrofolate reductase-thymidylate synthase gene of Plasmodium falciparum. Proceedings of the National Academy of Sciences, USA 85, 91099113.CrossRefGoogle Scholar
FERLAN, J. T., MOOKHERJEE, S., OKEZIE, I. N., FULGENCE, L. & SIBLEY, C. H. ( 2001). Mutagenesis of dihydrofolate reductase from Plasmodium falciparum: analysis in Saccharomyces cerevisiae of triple mutant alleles resistant to pyrimethamine or WR99210. Molecular and Biochemical Parasitology 113, 139150.CrossRefGoogle Scholar
HANKINS, E. G., WARHURST, D. C. & SIBLEY, C. H. ( 2001). Novel alleles of the Plasmodium falciparum dhfr highly resistant to pyrimethamine and chlorcycloguanil, but not WR99210. Molecular and Biochemical Parasitology 117, 91102.CrossRefGoogle Scholar
HASTINGS, M. D. & SIBLEY, C. H. ( 2002). Pyrimethamine and WR99210 exert opposing selection on dihydrofolate reductase from Plasmodium vivax. Proceedings of the National Academy of Sciences, USA 99, 1313713141.CrossRefGoogle Scholar
HYDE, J. E. ( 2002). Mechanisms of resistance of Plasmodium falciparum to antimalarial drugs. Microbes and Infection 4, 165174.CrossRefGoogle Scholar
KAMCHONWONGPAISAN, S., QUARRELL, R., CHAROENSETAKUL, N., PONSINET, R., VILAIVAN, T., VANICHTANANKUL, J., TARNCHOMPOO, B., SIRAWARAPORN, W., LOWE, G. & YUTHAVONG, Y. ( 2004). Inhibitors of multiple mutants of Plasmodium falciparum dihydrofolate reductase and their antimalarial activities. Journal of Medicinal Chemistry 47, 673680.CrossRefGoogle Scholar
KNIGHTON, D. R., KAN, C. C., HOWLAND, E., JANSON, C. A., HOSTOMSKA, Z., WELSH, K. M. & MATTHEWS, D. A. ( 1994). Structure of and kinetic channelling in bifunctional dihydrofolate reductase-thymidylate synthase. Nature Structural Biology 1, 186194.CrossRefGoogle Scholar
LEARTSAKULPANICH, U., IMWONG, M., PUKRITTAYAKAMEE, S., WHITE, N. J., SNOUNOU, G., SIRAWARAPORN, W. & YUTHAVONG, Y. ( 2002). Molecular characterization of dihydrofolate reductase in relation to antifolate resistance in Plasmodium vivax. Molecular and Biochemical Parasitology 119, 6373.CrossRefGoogle Scholar
LEMCKE, T., CHRISTENSEN, I. T. & JØRGENSEN, F. S. ( 1999). Towards an understanding of drug resistance in malaria: three-dimensional structure of Plasmodium falciparum dihydrofolate reductase by homology building. Bioorganic and Medicinal Chemistry 7, 10031011.CrossRefGoogle Scholar
McKIE, J. H., DOUGLAS, K. T., CHAN, C., ROSER, S. A., YATES, R., READ, M., HYDE, J. E., DASCOMBE, M. J., YUTHAVONG, Y. & SIRAWARAPORN, W. ( 1998). Rational drug design approach for overcoming drug resistance: application to pyrimethamine resistance in malaria. Journal of Medicinal Chemistry 41, 13671370.CrossRefGoogle Scholar
OLLIARO, P. L. & YUTHAVONG, Y. ( 1999). An overview of chemotherapeutic targets for antimalarial drug discovery. Pharmacology and Therapeutics 81, 91110.CrossRefGoogle Scholar
O'NEIL, R. H., LILIEN, R. H., DONALD, B. R., STROUD, R. M. & ANDERSON, A. C. ( 2003). Phylogenetic classification of protozoa based on the structure of the linker domain in the bifunctional enzyme, dihydrofolate reductase-thymidylate synthase. Journal of Biological Chemistry 278, 5298052987.CrossRefGoogle Scholar
PETERSON, D. S., WALLIKER, D. & WELLEMS, T. E. ( 1988). Evidence that a point mutation in dihydrofolate reductase-thymidylate synthase confers resistance to pyrimethamine in falciparum malaria. Proceedings of the National Academy of Sciences, USA 85, 91149118.CrossRefGoogle Scholar
RASTELLI, G., SIRAWARAPORN, W., SOMPORNPISUT, P., VILAIVAN, T., KAMCHONWONGPAISAN, S., QUARRELL, R., LOWE, G., THEBTARANONTH, Y. & YUTHAVONG, Y. ( 2000). Interaction of pyrimethamine, cycloguanil, WR99210 and their analogues with Plasmodium falciparum dihydrofolate reductase: structural basis of antifolate resistance. Bioorganic and Medicinal Chemistry 8, 11171128.CrossRefGoogle Scholar
RIDLEY, R. G. ( 2002). Chemotherapeutic hope on the horizon for Plasmodium vivax malaria? Proceedings of the National Academy of Sciences, USA 99, 1336213364.Google Scholar
SARDARIAN, A., DOUGLAS, K. T., READ, M., SIMS, P. F. G., HYDE, J. E., CHITNUMSUB, P., SIRAWARAPORN, R. & SIRAWARAPORN, W. ( 2003). Pyrimethamine analogs as strong inhibitors of double and quadruple mutants of dihydrofolate reductase in human malaria parasites. Organic Biomolecular Chemistry 1, 960964.CrossRefGoogle Scholar
SHALLOM, S., ZHANG, K., JIANG, L. & RATHOD, P. K. ( 1999). Essential protein-protein interactions between Plasmodium falciparum thymidylate synthase and dihydrofolate reductase domains. Journal of Biological Chemistry 274, 3778137786.CrossRefGoogle Scholar
SIRAWARAPORN, W., YONGKIETRAKUL, S., SIRAWARAPORN, R., YUTHAVONG, Y. & SANTI, D. V. ( 1997 a). Plasmodium falciparum: asparagine mutant at residue 108 of dihydrofolate reductase is an optimal antifolate-resistant single mutant. Experimental Parasitology 87, 245252.Google Scholar
SIRAWARAPORN, W., SATHITKUL, T., SIRAWARAPORN, R., YUTHAVONG, Y. & SANTI, D. V. ( 1997 b). Antifolate-resistant mutants of Plasmodium falciparum dihydrofolate reductase. Proceedings of the National Academy of Sciences, USA 94, 11241129.Google Scholar
SIRAWARAPORN, W., SIRAWARAPORN, R., YONGKIETTRAKUL, S., ANUWATWORA, A., RASTELLI, G., KAMCHONWONGPAISAN, S. & YUTHAVONG, Y. ( 2002). Mutational analysis of Plasmodium falciparum dihydrofolate reductase: the role of aspartate 54 and phenylalanine 223 on catalytic activity and antifolate binding. Molecular and Biochemical Parasitology 121, 185193.CrossRefGoogle Scholar
SIRICHAIWAT, C., INTARAUDOM, C., KAMCHONWONGPAISAN, S., VANICHTANANKUL, J., THEBTARANONTH, Y. & YUTHAVONG, Y. ( 2004). Target guided synthesis of 5-benzyl-2,4-diaminopyrimidines: their antimalarial activities and binding affinities to wild type and mutant dihydrofolate reductases from Plasmodium falciparum. Journal of Medicinal Chemistry 47, 345354.CrossRefGoogle Scholar
TANAKA, M., GU, H. M., BZIK, D. J., LI, W. B. & INSELBURG, J. W. ( 1990). Dihydrofolate reductase mutations and chromosomal changes associated with pyrimethamine resistance of Plasmodium falciparum. Molecular and Biochemical Parasitology 39, 127134.CrossRefGoogle Scholar
TARNCHOMPOO, B., SIRICHAIWAT, C., PHUPONG, W., INTARAUDOM, C., SIRAWARAPORN, W., KAMCHONWONGPAISAN, S., VANICHTANANKUL, J., THEBTARANONTH, Y. & YUTHAVONG, Y. ( 2002). Development of 2,4-diaminopyrimidines as antimalarials based on inhibition of the S108N and C59R+S108N mutants of dihydrofolate reductase from pyrimethamine-resistant Plasmodium falciparum. Journal of Medicinal Chemistry 45, 12441252.CrossRefGoogle Scholar
WARHURST, D. C. ( 1998). Antimalarial drug discovery: development of inhibitors of dihydrofolate reductase active in drug resistance. Drug Discovery Today 3, 538546.CrossRefGoogle Scholar
WARHURST, D. C. ( 2002). Resistance to antifolates in Plasmodium falciparum, the causative agent of tropical malaria. Science Progress 85, 89111.CrossRefGoogle Scholar
WARREN, M. S., BROWN, K. A., FARNUM, M. F., HOWELL, E. E. & KRAUT, J. ( 1991). Investigation of the functional role of tryptophan-22 in Escherichia coli dihydrofolate reductase by site-directed mutagenesis. Biochemistry 30, 1109211103.CrossRefGoogle Scholar
WATTANARANGSAN, J., CHUSACULTANACHAI, S., YUVANIYAMA, J., KAMCHONWONGPAISAN, S. & YUTHAVONG, Y. ( 2003). Effect of N-terminal truncation of Plasmodium falciparum dihydrofolate reductase on dihydrofolate reductase and thymidylate synthase activity. Molecular and Biochemical Parasitology 126, 97102.CrossRefGoogle Scholar
YUTHAVONG, Y., VILAIVAN, T., CHAREONSETHAKUI, N., KAMCHONWONGPAISAN, S., SIRAWARAPORN, W., QUARRELL, R. & LOWE, G. ( 2000). Development of a lead inhibitor for the A16V+S108T mutant of dihydrofolate reductase from the cycloguanil-resistant strain (T9/94) of Plasmodium falciparum. Journal of Medicinal Chemistry 43, 27382744.CrossRefGoogle Scholar
YUTHAVONG, Y. ( 2002). Basis for antifolate action and resistance in malaria. Microbes and Infection 4, 175182.CrossRefGoogle Scholar
YUVANIYAMA, J., CHITNUMSUB, P., KAMCHONWONGPAISAN, S., VANICHTANANKUL, J., SIRAWARAPORN, W., TAYLOR, P., WALKINSHAW, M. D. & YUTHAVONG, Y. ( 2003). Insights into antifolate resistance from malarial DHFR-TS structures. Nature Structural Biology 10, 357365.CrossRefGoogle Scholar
ZHANG, K. & RATHOD, P. K. ( 2002). Divergent regulation of dihydrofolate reductase between malaria parasite and human host. Science 296, 545547.CrossRefGoogle Scholar