Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-23T14:26:15.849Z Has data issue: false hasContentIssue false

Malaria, sexual development and transmission: retrospect and prospect

Published online by Cambridge University Press:  07 August 2009

R. E. SINDEN*
Affiliation:
Department of Life Sciences, Imperial College, London SW7 2AZ, UK
*
*Tel: 020 7594 5425. Fax: 020 7594 5424. E-mail: [email protected]

Summary

It is difficult to recapture the excitement of recent research into the malaria parasites. Plasmodium has shown itself to be a most elegant, resourceful and downright devious cell. To reveal any of its manifold secrets is a hard-won privilege. The thrill of this intellectual endeavour, however, has to be tempered by the realism that we have made unremarkable progress in attacking malaria in the field, where it remains almost as omnipresent as it ever was in the 19th and 20th centuries, and both the parasite and vector have become more difficult to control than ever before. This personal view looks back at the significant progress made, and forward to the challenges of the future, focusing on work on sexual development.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahmed, A. M., Maingon, R. D., Taylor, P. J. and Hurd, H. (1999). The effects of infection with Plasmodium yoelii nigeriensis on the reproductive fitness of the mosquito Anopheles gambiae. Invertebrate Reproduction and Development 36, 217222.CrossRefGoogle Scholar
Al-Olayan, E. B., Beetsma, A. L., Butcher, G. A., Sinden, R. E. and Hurd, H. (2002). Complete development of the mosquito phases of the malaria parasite in vitro. Science 295, 677679.CrossRefGoogle ScholarPubMed
Alano, P., Read, D., Bruce, M., Aikawa, M., Kaido, T., Tegoshi, T., Bhatti, S., Smith, D. K., Luo, C., Hansra, S., Carter, R. and Elliott, J. F. (1995). COS cell expression cloning of Pfg377, a Plasmodium falciparum gametocyte antigen associated with osmiophilic bodies. Molecular and Biochemical Parasitology 74, 143156.CrossRefGoogle ScholarPubMed
Alavi, Y., Arai, M., Mendoza, J., Tufet-Bayona, M., Sinha, R., Fowler, R., Billker, O., Franke-Fayard, B., Janse, C. J., Waters, A. P. and Sinden, R. E. (2003). The dynamics of interactions between Plasmodium and the mosquito: a study of the infectivity of Plasmodium berghei and Plasmodium gallinaceum, and their transmission by Anopheles stephensi, Anopheles gambiae and Aedes aegypti. International Journal for Parasitology 33, 933943.CrossRefGoogle ScholarPubMed
Amino, R., Giovannini, D., Thiberge, S., Gueirard, P., Boisson, B., Dubremetz, J. F., Prévost, M. C., Ishino, T., Yuda, M. and Ménard, R. (2008). Host cell traversal is important for progression of the malaria parasite through the dermis to the liver. Cell Host and Microbe 3, 8896.CrossRefGoogle ScholarPubMed
Baer, K., Roosevelt, M., Clarkson, A. B. Jr., van Rooijen, N., Schneider, T. and Frevert, U. (2007). Kupffer cells are obligatory for Plasmodium yoelii sporozoite infection of the liver. Cellular Microbiology 9, 397412.CrossRefGoogle ScholarPubMed
Bass, C. C. and Johns, F. M. (1912). The cultivation of malarial Plasmodia (Plasmodium vivax and Plasmodium falciparum) in vitro. Journal of Experimental Medicine 16, 567579.CrossRefGoogle ScholarPubMed
Billker, O., Dechamps, S., Tewari, R., Wenig, G., Franke-Fayard, B. and Brinkmann, V. (2004). Calcium and a calcium-dependent protein kinase regulate gamete formation and mosquito transmission in a malaria parasite. Cell 117, 503514.CrossRefGoogle Scholar
Billker, O., Lindo, V., Panico, M., Etienne, T., Paxton, T., Dell, A., Rogers, M., Sinden, R. E. and Morris, H. (1998). Identification of the putative inducer of malaria development in the mosquito as xanthurenic acid. Nature, London 392, 289292.CrossRefGoogle ScholarPubMed
Billker, O., Shaw, M. K., Margos, G. and Sinden, R. E. (1997). The roles of temperature pH and mosquito factors as triggers of male and female gametogenesis of Plasmodium berghei in vitro. Parasitology 114, 17.CrossRefGoogle Scholar
Blandin, S. and Levashina, E. A. (2004). Mosquito immune responses against malaria parasites. Current Opinion in Immunology 16, 1620.CrossRefGoogle ScholarPubMed
Boyd, M. F. (1949). Malariology, a Comprehensive Survey of all Aspects of this Group of Diseases from a Global Standpoint. W.B. Saunders and Company, Philadelphia, USA and London, UK.Google Scholar
Bozdech, Z., Zhu, J., Joachimiak, M. P., Cohen, F. E., Pulliam, B. and DeRisi, J. L. (2003). Expression profiling of the schizont and trophozoite stages of Plasmodium falciparum with a long-oligonucleotide microarray. Genome Biology 4, R9.CrossRefGoogle ScholarPubMed
Brown, K. M. and Kreier, J. P. (1986). Effect of macrophage activation on phagocyte-Plasmodium interaction. Infection and Immunity 51, 744749.CrossRefGoogle ScholarPubMed
Bruce, M. C., Alano, P., Duthie, S. and Carter, R. (1990). Commitment of the malaria parasite Plasmodium falciparum to sexual and asexual development. Parasitology 100, 191200.CrossRefGoogle ScholarPubMed
Bruce-Chwatt, L. J. (1985). Essential Malariology, 2nd Edn.Heinemann Medical Books, London, UK.Google Scholar
Butcher, G. A. (1997). Antimalarial drugs and the mosquito transmission of Plasmodium. I International Journal for Parasitology 27, 975987.CrossRefGoogle Scholar
Carter, R., Mendis, K. N., Miller, L. H., Molineaux, L. and Saul, A. (2000). Malaria transmission-blocking vaccines – how can their development be supported? Nature Medicine 6, 241244.CrossRefGoogle ScholarPubMed
Carter, R., Mendis, K. N. and Roberts, D. (2000). Spatial targeting of interventions against malaria. Bulletin of the World Health Organization 78, 14011411.Google ScholarPubMed
Chao, J. and Ball, G. H. (1964). Cultivation of the insect cycle of Plasmodia. American Journal of Tropical Medicine and Hygiene 13, 181192.CrossRefGoogle ScholarPubMed
Coatney, G. R., Collins, W. E., Warren, MCW. and Contacos, P. G. (1971). The Primate Malarias, 2nd Edn. U.S. Department of Health, Education and Welfare, NIH, Bethesda, Maryland, USA.Google Scholar
Collins, F. H., Sakai, R. K., Vernick, K. D., Paskewitz, S., Seeley, D. C., Miller, L. H., Collins, W. E., Campbell, C. C. and Gwadz, R. W. (1986). Genetic selection of a plasmodium refractory strain of the malaria vector Anopheles gambiae. Science 234, 607610.CrossRefGoogle ScholarPubMed
Creasey, A. M., Ranford-Cartwright, L. C., Moore, D. J., Williamson, D. H., Wilson, R. J. M., Walliker, D. and Carter, R. (1993). Uniparental inheritance of the mitochondrial gene cytochrome-b in Plasmodium falciparum. Current Genetics 23, 360364.CrossRefGoogle ScholarPubMed
Dawes, E. J., Zhuang, S., Sinden, R. E. and Basáñez, M. G. (2009). The temporal dynamics of Plasmodium density through the sporogonic cycle within Anopheles mosquitoes. Transactions of the Royal Society of Tropical Medicine and Hygiene. Apr 4. [Epub ahead of print]CrossRefGoogle ScholarPubMed
Dimopoulos, G., Muller, H-M., Levashina, E. A. and Kafatos, F. C. (2001). Innate immune defense against malaria infection in the mosquito. Current Opinion in Immunology 13, 7988.CrossRefGoogle ScholarPubMed
Florens, L., Washburn, M. P., Raine, J. D., Anthony, R. M., Grainger, M., Haynes, J. D., Moch, J. K., Muster, N., Sacci, J. B., Tabb, D. L., Witney, A. A., Wolters, D., Wu, Y., Gardner, M. J., Holder, A. A., Sinden, R. E., Yates, J. R. and Carucci, D. J. (2002). A proteomic view of the Plasmodium falciparum life cycle. Natur, Londone 419, 520526.CrossRefGoogle ScholarPubMed
Garnham, P. C. C. (1966). Malaria Parasites and other Haemosporidia. Blackwell Scientific Publications. Oxford, UK.Google Scholar
Geissbühler, Y., Kannady, K., Chaki, P. P, Emidi, B., Govella, N. J., Mayagaya, V., Kiama, M., Mtasiwa, D., Mshinda, H., Lindsay, S. W., Tanner, M., Fillinger, U., de Castro, M. C. and Killeen, G. F. (2009). Microbial larvicide application by a large-scale, community-based program reduces malaria infection prevalence in Urban Dar Es Salaam, Tanzania. PLoS One 4, e5107, Epub 2009 Mar 31.CrossRefGoogle ScholarPubMed
Greenwood, B. (2009). Can malaria be eliminated? Research, education and capacity development in resource-poor settings – a Festschrift for Professor M.E. Molyneux OBE. Transactions of the Royal Society of Tropical Medicine and Hygiene 103, (Suppl. 1), S2S5.CrossRefGoogle Scholar
Hall, N., Karras, M., Raine, J. D., Carlton, J. M., Kooij, T. W. J., Berriman, M., Florens, L., Janssen, C. S., Pain, A., Christophides, G. K., James, K., Rutherford, K., Harris, B., Harris, D. B., Churcher, C., Quail, M. A., Ormond, D., Doggett, J., Trueman, H. E., Mendoza, J., Bidwell, S. L., Rajandream, M-A., Carucci, D. J., Yates, J. R. III, Kafatos, F. C., Janse, C. J., Barrell, B., Turner, C. M. R., Waters, A. P. and Sinden, R. E. (2005). A comprehensive survey of the Plasmodium life cycle by genomic, transcriptomic, and proteomic analyses. Science 307, 8286.CrossRefGoogle ScholarPubMed
Han, Y. S., Thompson, J., Kafatos, F. C. and Barillas-Mury, C. (2000). Molecular interactions between Anopheles stephensi midgut cells and Plasmodium berghei: the time bomb theory of ookinete invasion of mosquitoes. The EMBO Journal 19, 60306040.CrossRefGoogle ScholarPubMed
Hayward, R. E., DeRisi, J. L., Alfadhli, S., Kaslow, D. C., Brown, P. O. and Rathod, P. K. (2000). Shotgun DNA microarrays and stage-specific gene expression in Plasmodium falciparum malaria. Molecular Microbiology 35, 6–14.CrossRefGoogle ScholarPubMed
Hulls, R. H. (1971). The adverse effects of a microsporidian on the sporogony and infectivity of Plasmodium berghei. Transactions of the Royal Society of Tropical Medicine and Hygiene 65, 421422.CrossRefGoogle Scholar
Janse, C. J., Mons, B., Rouwenhorst, R. J., Klooster van der, P. F. J., Overdulve, J. P. and Kaay van der, H. J. (1985). In vitro formation of ookinetes and functional maturity of Plasmodium berghei gametocytes. Parasitology 91, 1929.CrossRefGoogle ScholarPubMed
Khan, S. M., Franke-Fayard, B., Mair, G. R., Lasonder, E., Janse, C. J., Mann, M. and Waters, A. P. (2005). Proteome analysis of separated male and female gametocytes reveals novel sex-specific Plasmodium biology. Cell 121, 675687.CrossRefGoogle ScholarPubMed
Krotoski, W. A. (1985). Discovery of the hypnozoite and a new theory of malarial relapse. Transactions of the Royal Society of Tropical Medicine and Hygiene 79, 111.CrossRefGoogle Scholar
Kumar, S. and Barillas-Mury, C. (2005). Ookinete-induced midgut peroxidases detonate the time bomb in anopheline mosquitoes. Insect Biochemistry and Molecular Biology 35, 721727.CrossRefGoogle ScholarPubMed
Lal, K., Delves, M. J., Bromley, E., Wastling, J. M., Tomley, F. M. and Sinden, R. E. (2009 a). Plasmodium male development gene-1 (mdv-1) is important for female sexual development and identifies a polarised plasma membrane during zygote development. International Journal for Parasitology 39, 755761.CrossRefGoogle ScholarPubMed
Lal, K., Bromley, E., Prieto, H., Sanderson, S. J., Yates, J. R. III, Wastling, J. M., Tomley, F. M. and Sinden, R. E. (2009 b). Characterisation of Plasmodium invasive organelles, an ookinete microneme proteome. Proteomics 9, 11421151.CrossRefGoogle ScholarPubMed
Landau, I., Chabaud, A. G., Mora-Silvera, E., Coquelin, F., Boulard, Y., Rénia, L. and Snounou, G. (1999). Survival of rodent malaria merozoites in the lymphatic network: potential role in chronicity of the infection. Parasite 6, 311322.CrossRefGoogle ScholarPubMed
Lasonder, E., Ishihama, Y., Andersen, J. S., Vermunt, A. M. W., Paln, A., Sauervein, R. W., Eling, W. M. C., Hall, N., Waters, A. P., Stunnenberg, H. G. and Mann, M. (2002). Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry. Nature, London 419, 537542.CrossRefGoogle ScholarPubMed
Lasonder, E., Janse, C. J., van Gemert, G.-J., Mair, G. R., Vermunt, A. M. W., Douradinha, B. G., van Noort, V., Huynen, M. A., Luty, A. J. F., Kroeze, H., Khan, S. M., Sauerwein, R. W., Waters, A. P., Mann, M. and Stunnenberg, H. G. (2008). Proteomic profiling of Plasmodium sporozoite maturation identifies new proteins essential for parasite development and infectivity. PLoS Pathogens 4, e1000195.CrossRefGoogle ScholarPubMed
Le Roch, K. G., Johnson, J. R., Florens, L., Zhou, Y., Santrosyan, A., Grainger, M., Yan, S. F., Williamson, K. C., Holder, A. A., Carucci, D. J., Yates, J. R. III. and Winzeler, E. A. (2004). Global analysis of transcript and protein levels across the Plasmodium falciparum life cycle. Genome Research 14, 23082318.CrossRefGoogle ScholarPubMed
Le Roch, K. G., Zhou, Y., Blair, P. L., Grainger, M., Moch, J. K., Haynes, J. D., de la Vega, P., Holder, A. A., Batalov, S., Carucci, D. J. and Winzeler, E. A. (2003). Discovery of gene function by expression profiling of the malaria parasite life cycle. Science 301, 15031508.CrossRefGoogle ScholarPubMed
Levashina, E. A., Moita, L. F., Blandin, S., Vriend, G., Lagueux, M. and Kafatos, F. C. (2001). Conserved role of a complement-like protein in phagocytosis revealed by dsRNA knockout in cultured cells of the mosquito, Anopheles gambiae. Cell 104, 709718.CrossRefGoogle ScholarPubMed
Liu, Y., Tewari, R., Ning, J., Blagborough, A. M., Pei, J., Grishin, N. V., Steele, R. E., Sinden, R. E., Snell, W. J. and Billker, O. (2008). A conserved mechanism for gamete fusion. Genes and Development 22, 10511068.CrossRefGoogle Scholar
Luckhart, S., Vodovotz, Y., Cui, L. W. and Rosenberg, R. (1998). The mosquito Anopheles stephensi limits malaria parasite development with inducible synthesis of nitric oxide. Proceedings of the National Academy of Sciences, USA 95, 57005705.CrossRefGoogle ScholarPubMed
Maegraith, B. G. (1948). Pathological Processes in Malaria and Blackwater Fever. Blackwell Scientific Publications, Oxford, UK.Google Scholar
Mair, G., Braks, J. A. M., Garver, L. S., Wiegant, J. C. A. G., Hall, N., Dirks, R. W., Khan, S. M., Dimopoulos, G., Janse, C. J. and Waters, A. P. (2006). Regulation of sexual development of Plasmodium by translational repression. Science 313, 667669.CrossRefGoogle ScholarPubMed
Osta, M. A., Christophides, G. K. and Kafatos, F. C. (2004). Effects of mosquito genes on Plasmodium development. Science 303, 20302032.CrossRefGoogle ScholarPubMed
Paton, M. G., Barker, G. C., Matsuoka, H., Ramesar, J., Janse, C. J., Waters, A. P. and Sinden, R. E. (1993). Structure and expression of a conserved and post-transcriptionally regulated gene encoding a surface protein of the sexual stages from malaria parasite Plasmodium berghei. Molecular and Biochemical Parasitology 59, 263276.CrossRefGoogle Scholar
Patra, K. P., Johnson, J. R., Cantin, G. T., Yates, J. R. III. and Vinetz, J. M. (2008). Proteomic analysis of zygote and ookinete stages of the avian malaria parasite Plasmodium gallinaceum deliniates the homologous proteomes of the lethal human malaria parasite Plasmodium falciparum. Proteomics 8, 24922499.CrossRefGoogle Scholar
Poudel, S., Newman, R. A. and Vaughan, J. A. (2008). Rodent Plasmodium: population dynamics of early sporogony within Anopheles stephensi mosquitoes. The Journal of Parasitology 94, 999–1008.CrossRefGoogle ScholarPubMed
Povolones, M., Waterhouse, R. M., Kafatos, F. and Christophides, G. K. (2009). Leucine-rich repeat protein complex activates mosquito complement in defense against Plasmodium parasites. Science 324, 258261.CrossRefGoogle Scholar
Pradel, G. and Frevert, U. (2001). Malaria sporozoites actively enter and pass through rat Kupffer cells prior to hepatocyte invasion. Hepatology 33, 11541165.CrossRefGoogle ScholarPubMed
Raine, J. D., Ecker, A., Mendoza, J., Tewari, R., Stanway, R. R. and Sinden, R. E. (2007). Female inheritance of malarial lap genes is essential for mosquito transmission. PLoS Pathogens 3, e30.CrossRefGoogle Scholar
Read, A. F., Lynch, P. A. and Thomas, M. B. (2009). How to make evolution-proof insecticides for malaria control. PLoS Biology 7, e1000058.CrossRefGoogle ScholarPubMed
Rowland, M. and Boersma, E. (1988). Changes in the spontaneous flight activity of the mosquito Anopheles stephensi by parasitization with the rodent malaria Plasmodium yoelii. Parasitology 97, 221227.Google ScholarPubMed
Schiefer, B. A., Ward, R. A. and Eldridge, B. F. (1977). Plasmodium cynomologi: effects of malaria infection on laboratory flight performance of Anopheles stephensi mosquitoes. Experimental Parasitology 41, 397404.CrossRefGoogle Scholar
Schneider, I. and Vanderberg, J. P. (1980). Culture of the invertebrate stages of plasmodia and the culture of mosquito tissues. In Malaria (ed. Kreier, J. P.), pp. 235270. Academic Press, New York, USA.Google Scholar
Silvestrini, F., Alano, P. and Williams, J. L. (2000). Commitment to the production of male and female gametocytes in the human malaria parasite Plasmodium falciparum. Parasitology 121, 465471.CrossRefGoogle Scholar
Silvestrini, F., Bozdech, Z., Lanfrancotti, A., Di Guilio, E., Bultrini, E., Picci, L., deRisi, J. L., Pizzi, E. and Alano, P. (2005). Genome-wide identification of genes upregulated at the onset of gametocytogenesis in Plasmodium falciparum. Molecular and Biochemical Parasitology 143, 100110.CrossRefGoogle ScholarPubMed
Sinden, R. E., Canning, E. U. and Spain, B. (1976). Gametogenesis and fertilization in Plasmodium yoelii nigeriensis: a transmission electron microscope study. Proceedings of the Royal Society of London, B 193, 5576.Google ScholarPubMed
Sinden, R. E., Dawes, E. J., Alavi, Y., Waldock, J., Finney, O., Mendoza, J., Butcher, G. A., Andrews, L., Hill, A. V., Gilbert, S. C. and Basanez, M-G. (2008). Progression of Plasmodium berghei through Anopheles stephensi is density-dependent. PLoS Pathogens 3, e195.CrossRefGoogle Scholar
Sinden, R. E., Hartley, R. H. and Winger, L. (1985). The development of Plasmodium ookinetes in vitro: an ultrastructural study including a description of meiotic division. Parasitology 91, 227244.CrossRefGoogle ScholarPubMed
Smalley, M. E. (1976). Plasmodium falciparum gametocytogenesis in vitro. Nature, London 264, 271272.CrossRefGoogle ScholarPubMed
Smith, T. G., Lourenço, P., Carter, R., Walliker, D. and Ranford-Cartwright, L. C. (2000). Commitment to sexual differentiation in the human malaria parasite, Plasmodium falciparum. Parasitology 91, 127133.CrossRefGoogle Scholar
Strome, C. P. A., DeSantis, P. L. and Beaudoin, R. L. (1979). The cultivation of the exoerythrocytic stages of Plasmodium berghei from sporozoites. In Vitro 15, 531536.CrossRefGoogle ScholarPubMed
Sullivan, M., Li, J., Kumar, S., Rogers, M. J. and McCutchan, T. F. (2000). Effects of interruption of apicoplast function on malaria infection, development and transmission. Molecular and Biochemical Parasitology 109, 1723.CrossRefGoogle ScholarPubMed
Tarun, A. S., Peng, X., Dumpit, R. F., Ogata, Y., Silva-Rivera, H., Camargo, N., Bergman, L. W. and Kappe, S. H. I. (2008). A combined transcriptome and proteome survey of malaria parasite liver stages. Proceedings of the National Academy of Sciences, USA 105, 305310.CrossRefGoogle ScholarPubMed
Terenius, O., Marinotti, O., Sieglaff, D. and James, A. A. (2008). Molecular genetic manipulation of vector mosquitoes. Cell Host and Microbe 4, 417423.CrossRefGoogle ScholarPubMed
Thomas, M. B. and Read, A. F. (2007). Can fungal pesticides control malaria? Nature Reviews Microbiology 5, 377383.CrossRefGoogle Scholar
Trager, W. and Jensen, J. B. (1976). Human malaria parasites in continuous culture. Science 193, 673675.CrossRefGoogle ScholarPubMed
Vaidya, A. B., Morrisey, J., Plowe, C. V., Kaslow, D. C. and Wellems, T. E. (1993). Unidirectional dominance of cytoplasmic inheritance in two genetic crosses of Plasmodium falciparum. Molecular Cell Biology 13, 73497357.Google ScholarPubMed
Valkiunas, G. (2005). Avian Malaria Parasites and other Haemosporidia. CRC Press, Boca Raton, London, New York and Washington DC, USA.Google Scholar
van Dijk, M. R., Janse, C. J., Thompson, J., Waters, A. P., Braks, J. A. M., Dodemont, H. J., Stunnenberg, H. G., van Gemert, G-J., Sauerwein, R. W. and Eling, W. (2001). A central role for P48/45 in malaria parasite male gamete fertility. Cell 104, 153164.CrossRefGoogle ScholarPubMed
van Schaijk, B. C. L., van Dijk, M. R., van de Vegte-Bolmer, M., van Gemert, G-J., van Dooren, M. W., Eksi, S., Roeffen, W. F. G., Janse, C. J., Waters, A. P. and Sauerwein, R. W. (2006). Pfs47, paralog of the male fertility factor Pfs48/45, is a female specific surface protein in Plasmodium falciparum. Molecular and Biochemical Parasitology 149, 216222.CrossRefGoogle ScholarPubMed
Vaughan, J. A. (2006). Population dynamics of Plasmodium sprorogony. Trends in Parasitology 2, 6370.Google Scholar
Vernick, K. D., Fujioka, H., Seeley, D. C., Tandler, B., Aikawa, M. and Miller, L. H. (1995). Plasmodium gallinaceum: a refractory mechanism of ookinete killing in the mosquito, anopheles gambiae. Experimental Parasitology 80, 583595.CrossRefGoogle ScholarPubMed
Wernsdsorfer, W. H. and McGregor, I. (1988). Malaria. Principles and Practice of Malariology. Vols 1 and 2, Churchill Livingstone, Edinburgh, London, Melbourne and New York.Google Scholar
Yoeli, M. and Upmanis, R. S. (1968). Plasmodium berghei ookinete formation in vitro. Experimental Parasitology 22, 122128.CrossRefGoogle ScholarPubMed
Young, J. A., Fivelman, Q. L., Blair, P. L., de la Vega, P., Le Roch, K. G., Zhou, Y., Carucci, D. J., Baker, D. A. and Winzeler, E. A. (2005). The Plasmodium falciparum sexual development transcriptome: a microaaray analysis using ontology-based pattern identification. Molecular and Biochemical Parasitology 143, 6779.CrossRefGoogle Scholar
Yuda, M., Iwanaga, S., Shigenobu, S., Mair, G. R., Janse, C. J., Waters, A. P., Kato, T. and Kaneko, I. (2009). Identification of a transcription factor in the mosquito-invasive stage of malaria parasites. Molecular Microbiology 71, 14021414.CrossRefGoogle ScholarPubMed