Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T20:43:55.208Z Has data issue: false hasContentIssue false

Liposomes produced by reverse phase evaporation: in vitro and in vivo efficacy of diminazene aceturate against Trypanosoma evansi

Published online by Cambridge University Press:  28 January 2014

CAMILA BELMONTE OLIVEIRA*
Affiliation:
Department of Microbiology and Parasitology, Universidade Federal de Santa Maria (UFSM), Brazil
LUCAS ALMEIDA RIGO
Affiliation:
Department of Production and Control of Medicines, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Brazil
LUCIANA DALLA ROSA
Affiliation:
Department of Microbiology and Parasitology, Universidade Federal de Santa Maria (UFSM), Brazil
LUCAS TREVISAN GRESSLER
Affiliation:
Department of Microbiology and Parasitology, Universidade Federal de Santa Maria (UFSM), Brazil
CARINE ELOISE PRESTES ZIMMERMANN
Affiliation:
Department of Microbiology and Parasitology, Universidade Federal de Santa Maria (UFSM), Brazil
ALINE FERREIRA OURIQUE
Affiliation:
Department of Production and Control of Medicines, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Brazil
ALEKSANDRO SCHAFER DA SILVA
Affiliation:
Department of Animal Science, Universidade do Estado de Santa Catarina – UDESC, Brazil
LUIZ C. MILETTI
Affiliation:
Department of Animal Production, Universidade do Estado de Santa Catarina, Lages, SC, Brazil
RUY CARLOS RUVER BECK
Affiliation:
Department of Production and Control of Medicines, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Brazil
SILVIA GONZALEZ MONTEIRO
Affiliation:
Department of Microbiology and Parasitology, Universidade Federal de Santa Maria (UFSM), Brazil
*
* Corresponding author: Departamento de Microbiologia e Parasitologia da UFSM, Faixa de Camobi – Km 9, Campus Universitário, Santa Maria, RS, Brasil. E-mail: [email protected]

Summary

This study aimed to develop and test the in vitro and in vivo effectiveness of diminazene aceturate encapsulated into liposomes (L-DMZ) on Trypanosoma evansi. To validate the in vitro tests with L-DMZ, the efficacy of a commercial formulation of diminazene aceturate (C-DMZ) was also assessed. The tests were carried out in culture medium for T. evansi, at concentrations of 0·25, 0·5, 1, 2 and 3 μg mL−1 of L-DMZ and C-DMZ. A dose-dependent effect was observed for both formulations (L-DMZ and C-DMZ), with the highest dose-dependent mortality of trypomastigotes being observed at 1 and 3 h after the onset of tests with L-DMZ. The results of in vivo tests showed the same effects in the animals treated with L-DMZ and C-DMZ in single doses of 3·5 mg kg−1 and for 5 consecutive days (3·5 mg kg−1 day−1). It was possible to conclude that T. evansi showed greater in vitro susceptibility to L-DMZ when compared with C-DMZ. In vivo tests suggest that treatment with the L-DMZ and C-DMZ showed similar efficacy in vivo. The potential of the formulation developed in this study was clearly demonstrated, as it increased the efficacy of the treatment against trypanosomosis, but more studies are needed to increase the effectiveness in vivo.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alving, C. R. and Richards, R. L. (1990). Liposomes containing liquid A: a potent nontoxic adjuvant for a human malaria sporozoite vaccine. Immunology Letters 24, 275280.Google Scholar
Anene, B. M., Onah, D. N. and Nawa, Y. (2001). Drug resistance in pathogenic African trypanosomes: what hopes for the future? Veterinary Parasitology 96, A83A100.CrossRefGoogle ScholarPubMed
Atsriku, C., Watso, D. G., Tettey, J. N. A., Grant, M. H. and Skellern, G. G. (2002). Determination of diminazene aceturate in pharmaceutical formulations by HPLC and identification of related substances by LC/MS. Journal of Pharmaceutical and Biomedical Analysis 30, 979986.Google Scholar
Badiee, A., Jaafari, M. R. and Khamesipour, A. (2007). Leishmania major: immune response in BALB/c mice immunized with stree-inducible protein 1 encapsulated in liposomes. Experimental Parasitology 115, 127134.Google Scholar
Baltz, T., Baltz, D., Giroud, C. and Crockett, J. (1985). Cultivation in a semi-defined medium of animal infective forms of Trypanosoma brucei, T. equiperdum, T. evansi, T. rhodesiense and T. gambiense . EMBO Journal 4, 12731277.Google Scholar
Batista, C. M. (2007). Lipossomas e suas aplicações terapêuticas: Estado da arte. Revista Brasileira de Ciências Farmacêuticas 43, 167179.Google Scholar
Brender, G. C., Pugh, D. M., Bywater, R. J. and Jenkins, W. L. (1991). Veterinary Applied Pharmacology & Therapeutics, 5th Edn. Ballière Tindall, London, UK.Google Scholar
Campbell, M., Prankerd, R. J., Davie, A. S. and Charman, W. N. (2004). Degradation of berenil (diminazene aceturate) in acidic aqueous solution. Journal of Pharmacy and Pharmacology 56, 13271332.CrossRefGoogle ScholarPubMed
Colpo, C. B., Monteiro, S. G., Stainki, D. R., Colpo, E. T. B. and Henriques, G. B. (2005). Infecção Natural por Trypanosoma evansi em cão no Rio Grande do Sul. Ciência Rural 35, 717719.Google Scholar
Dalla Rosa, L., Da Silva, A., Gressler, L. T., Oliveira, C. B., Dambrós, M. G., Miletti, L. C., França, T. R., Lopes, S. T. A., Samara, Y., Veiga, M. L. and Monteiro, S. G. (2013). Cordycepin (3′-deoxyadenosine) pentostatin (deoxycoformycin) combination treatment of mice experimentally infected with Trypanosoma evansi . Parasitology 1, 19.Google Scholar
Da Silva, A. S., Doyle, R. L. and Monteiro, S. G. (2006). Método de contenção e confecção de esfregaço sanguíneo para pesquisa de hemoparasitas em ratos e camundongos. Revista da Faculdade de Zootecnia, Veterinária e Agronomia 13, 8387.Google Scholar
Dávila, A. M. R., Souza, S. S., Campos, C. and Silva, R. A. (1999). The seroprevalence of equine trypanosomosis in the Pantanal. Memórias do Instituto Oswaldo Cruz 94, 199202.CrossRefGoogle ScholarPubMed
Doyle, R. L., Da Silva, A. S., Monteiro, S. G., Santurio, J. M. and Graça, D. L. (2007). Eficácia de medicamentos no controle da infecção experimental por Trypanosoma evansi em ratos. Acta Scientiae Veterinariae 35, 6771.Google Scholar
Frézard, F., Schettini, D. A., Rocha, O. G. and Demicheli, C. (2005). Lipossomas: propriedades físico – químicas e farmacológicas, aplicações na quimioterapia à base de antimónio. Química Nova 28, 511518.Google Scholar
Gillingwater, K., Kumar, A., Mohamed, A. I., Arafa, K. R., Stephens, C. E., Boykin, D. W., Tidwell, R. R. and Brun, R. (2010). In vitro activity and preliminary toxicity of various diamidine compounds against Trypanosoma evansi . Veterinary Parasitology 169, 264272.CrossRefGoogle ScholarPubMed
Gomes-Cardoso, L., Echevarria, A., Aguiar-Alves, F., Jansen, A. M. and Leon, L. L. (1999). Amidine derivatives are highly effective against Trypanosoma evansi trypomastigotes. Microbios 100, 181187.Google Scholar
Howes, F., Da Silva, A. S., Athayde, C. L., Costa, M. M., Corrêa, M. M. B., Tavares, K. C. S., Miletti, L. C., Lopes, S. T. A., Amaral, A. S. and Schmidt, C. (2011). A new therapeutic protocol for dogs infected with Trypanosoma evansi . Acta Scientiae Veterinariae 39, 14.Google Scholar
Immordino, M. L., Brusa, P., Arpicco, S., Stella, B., Dosio, F. and Cattel, L. (2003). Preparation, characterization, cytotoxicity and pharmacokinetics of liposomes containing docetaxel. Journal of Controlled Release 91, 417429.Google Scholar
Joshi, P. P., Shegokar, V. R., Powar, R. M., Herder, S., Katti, R., Salkar, H. S., Dani, V. S., Bhargava, A., Jannin, J. and Truc, P. (2005). Human trypanosomosis caused by Trypanosoma evansi in India: the first case report. American Journal of Tropical Medicine and Hygiene 73, 491495.CrossRefGoogle ScholarPubMed
Kaminsky, R. and Brun, R. (1998). In vitro and in vivo activities of trybizine hydrochloride against various pathogenic trypanosome species. Antimicrobial Agents and Chemotherapy 42, 28582862.Google Scholar
Kroubi, M., Daulouede, S., Karembe, H., Jallouli, Y., Howsam, M., Mossalayi, D., Vincendeau, P. and Betbeder, D. (2010). Development of a nanoparticulate formulation of diminazene to treat African trypanosomiasis. Nanotechnology 21, 18.Google Scholar
Lonsdale-Eccles, J. D. and Grab, D. J. (2002). Trypanosome hydrolases and the blood–brain barrier. Trends in Parasitology 18, 1719.Google Scholar
Lopez-Berestein, G. (1987). Liposomes as carriers of antimicrobial agents. Antimicrobial Agents and Chemotherapy 31, 675678.Google Scholar
Mamot, C., Drummond, D. C., Hong, K., Kirpotin, D. B. and Park, J. W. (2003). Liposome-based approaches to overcome anticancer drug resistance. Drug Research 6, 271279.Google Scholar
Masocha, W., Rottenberg, M. E. and Kristensson, K. (2007). Migration of African trypanosomes across the blood–brain barrier. Physiology and Behavior 92, 110114.CrossRefGoogle ScholarPubMed
Mertins, O., Sebben, M., Pohlmann, A. R. and Silveira, N. P. (2005). Production of soybean phosphatidylcholine-chitosan nanovesicles by reverse phase evaporation: a step by step study. Chemistry and Physics of Lipids 138, 2937.Google Scholar
Peregrine, A. S. (1994). Chemotherapy and delivery systems: haemoparasites. Veterinary Parasitology 54, 223248.Google Scholar
Peregrine, A. S. and Mamman, M. (1993). Pharmacology of diminazene: a review. Acta Tropica 54, 185203.Google Scholar
Polozova, A., Yamazaki, A., Brash, J. L. and Winnik, F. M. (1999). Effect of polymer architecture on the interactions of hydrophobically-modified poly-(N-isopropylamides) and liposomes. Colloids and Surfaces A: Physicochemical and Engineering Aspects 147, 1725.Google Scholar
Romero, E. L. and Morilla, M. J. (2010). Nanotechnological approaches against Chagas disease. Advanced Drug Delivery Reviews 62, 576588.Google Scholar
Silva, R. A. M. S., Seidl, A., Ramirez, L. and Dávila, A. M. R. (2002). Trypanosoma evansi e Trypanosoma vivax: Biologia, Diagnóstico e controle , Corumbá, Embrapa Pantanal.Google Scholar
Souto-Padrón, T., Carvalho, T. U., Chiari, E. and Souza, W. (1984). Further studies on the cell surface charge of Trypanosoma cruzi . Acta Tropica 41, 215225.Google Scholar
Tachibana, H., Yoshihara, E., Kaneda, Y. and Nakae, T. (1988). In vitro lysis of the bloodstream forms of Trypanosoma brucei gambiense by stearylamine-bearing liposomes. Antimicrobial Agents and Chemotherapy 32, 966970.CrossRefGoogle ScholarPubMed
Tuntasuvan, D., Jarabrum, W., Viseshakul, N., Mohkaew, K., Borisutsuwan, S., Theeraphan, A. and Kongkanjana, N. (2003). Chemotherapy of surra in horses and mules with diminazene aceturate. Veterinary Parasitology 110, 227233.Google Scholar
Ventura, R. M., Takeda, G. F., Silva, R. A. M. S., Nunes, V. L. B., Buck, G. A. and Teixeira, M. M. G. (2002). Genetic relatedness among Trypanosoma evansi stocks by random amplification of polymorphic DNA and evaluation of a synapomorphic DNA fragment for species-specific diagnosis. International Journal for Parasitology 32, 5363.CrossRefGoogle ScholarPubMed
Yongsheng, Y., Yongchun, O., Chengmai, R., Yuanguo, C. and Fenqin, Z. (1996). Trypanocidal value of liposomal diminazene in experimental Trypanosoma brucei evansi infection in mice. Veterinary Parasitology 95, 349352.Google Scholar
Yoshihara, E., Tachibana, H. and Nakae, T. (1987). Trypanocidal activity of the stearylamine-bearing liposome in vitro . Life Science 40, 21532159.CrossRefGoogle ScholarPubMed
Zanette, R. A., Da Silva, A. S., Costa, M. M., Monteiro, S. G., Santurio, J. M. and Lopes, S. T. A. (2008). Ocorrência de Trypanosoma evansi em eqüinos no município de Cruz Alta, RS, Brasil. Ciência Rural 38, 14681471.Google Scholar