Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T00:25:13.978Z Has data issue: false hasContentIssue false

Kinetics of proglottid formation, maturation and shedding during development of Hymenolepis nana

Published online by Cambridge University Press:  06 April 2009

H. Kumazawa
Affiliation:
Department of Parasitology, Kochi Medical School, Nankoku City, Kochi 781-51, Japan
N. Suzuki
Affiliation:
Department of Parasitology, Kochi Medical School, Nankoku City, Kochi 781-51, Japan

Summary

Growth of Hymenolepis nana in mice is analysed by identifying designated stages of proglottid maturation in the strobila, and by determining the numbers of proglottids between them and the posterior terminus of the worm, as a function of time after cysticercoid infection. The proglottid maturation rate was fairly constant between stage A (onset of the somatic primordium formation) and stage B (first appearance of sperms in the seminal vesicle), but gradually fell after stage B, during pre-patent development of the worm. The actual rate of proglottization during this period coincided well with that estimated from the number of proglottids between stages A and B on an assumption of a certain maturation rate. This procedure is extended to estimate the rates of proglottid formation and shedding during later development. It is deduced that the absolute rate of proglottization increases until day 12, gradually decreasing afterwards, and that from 2300 to 2800 proglottids are shed by day 20, until which from 4000 to 4500 proglottids have passed stage A. It is shown that the proportionate increase of the gravid region in older worms depends not only on a decrease in the rate of proglottization, but also on the prolonged period during which proglottids stay in the strobila.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andersen, K. (1978). The development of the tapeworm Diphyllobothrium latum (L. 1756) (Cestoda; Pseudophyllidea) in its definitive hosts, with special references to the growth patterns of D. dendriticum (Nitzsch, 1824) and D. ditremum (Creplin, 1827). Parasitology 77, 111–20.CrossRefGoogle Scholar
Archer, D. M. & Hopkins, C. A. (1958). Studies on cestode metabolism. III. Growth pattern of Diphyllobothrium, sp. in a definitive host. Experimental Parasitology 7, 125–44.CrossRefGoogle Scholar
Befus, A. D. (1975). Secondary infections of Hymenolepis diminuta in mice: effects of varying worm burdens in primary and secondary infections. Parasitology 71, 6175.CrossRefGoogle ScholarPubMed
Berntzen, A. K. (1962). In vitro cultivation of tapeworms. II. Growth and maintenance of Hymenolepis nana (Cestoda: Cyclophyllidea). Journal of Parasitology 48, 785–97.CrossRefGoogle ScholarPubMed
Bolla, R. I. & Roberts, L. S. (1971). Developmental physiology of cestodes. IX. Cytological characteristics of the germinative region of Hymenolepis diminuta. Journal of Parasitology 57, 267–77.CrossRefGoogle ScholarPubMed
Chandler, A. C. (1939). The effect of number and age of worms on development of primary and secondary infections with Hymenolepis diminuta in rats, and an investigation into the true nature of ‘premunition’ in tapeworm infections. American Journal of Hygiene, D 29, 105–14.Google Scholar
Davey, K. G. & Breckenridge, W. R. (1967). Neurosecretory cells in a cestode, Hymenolepis diminuta. Science 158, 931–2.CrossRefGoogle Scholar
De Rycke, P. H. (1966). Development of the cestode Hymenolepis microstoma in Mus musculus. Zeitschrift für Parasitenkunde 27, 350–4.CrossRefGoogle ScholarPubMed
Ghazal, A. M. & Avery, R. A. (1974). Population dynamics of Hymenolepis nana in mice: fecundity and the ‘crowding effect’. Parasitology 69, 403–15.CrossRefGoogle ScholarPubMed
Halvorsen, O. & Andersen, K. (1974). Some effects of population density in infections of Diphyllobothrium dendriticum (Nitzsch) in golden hamster (Mesocricetus auratus Waterhouse) and common gull (Larus canus L.). Parasitology 69, 149–60.CrossRefGoogle Scholar
Hopkins, C. A. (1980). Immunity and Hymenolepis diminuta. In Biology of the Tapeworm Hymenolepis diminuta (ed. Arai, H. P.), pp. 551614. New York: Academic Press.CrossRefGoogle Scholar
Hopkins, C. A. & Allen, L. A. (1979). Hymenolepis diminuta: the role of the tail in determining the position of the worm in the intestine of the rat. Parasitology 79, 401–10.CrossRefGoogle ScholarPubMed
Hopkins, C. A. & Stallard, H. E. (1974). Immunity to intestinal tapeworms: the rejection of Hymenolepis citelli by mice. Parasitology 69, 6376.CrossRefGoogle ScholarPubMed
Hopkins, C. A., Subramanian, G. & Stallard, H. (1972 a). The development of Hymenolepis diminuta in primary and secondary infections in mice. Parasitology 64, 401–12.CrossRefGoogle ScholarPubMed
Hopkins, C. A., Subramanian, G. & Stallard, H. (1972 b). The effect of immunosuppressants on the development of Hymenolepis diminuta in mice. Parasitology 65, 111–20.CrossRefGoogle ScholarPubMed
Howard, R. J. (1977). Hymenolepis microstoma: a change in susceptibility to resistance with increasing age of the parasite. Parasitology 75, 241–9.CrossRefGoogle ScholarPubMed
Jones, A. W. & Tan, B. D. (1971). Effect of crowding upon growth and fecundity in the mouse bile duct tapeworm, Hymenolepis microstoma. Journal of Parasitology 57, 8893.CrossRefGoogle Scholar
Khan, Z. I. & De Rycke, P. H. (1975). The in vitro cultivation of Hymenolepis microstoma with particular reference to the role of serum for strobilization and gametogenesis. Biologische Jaarboek, Gent 43, 151–72.Google Scholar
Loehr, K. A. & Mead, R. W. (1980). Changes in embryonic cell frequencies in the germinative and immature regions of Hymenolepis citelli during development. Journal of Parasitology 66, 792–6.CrossRefGoogle ScholarPubMed
Mettrick, D. F. & Cannon, C. E. (1970). Changes in the chemical composition of Hymenolepis diminuta (Cestoda: Cyclophyllidea) during prepatent development within the rat intestine. Parasitology 61, 229–43.CrossRefGoogle ScholarPubMed
Penfold, W. J., Penfold, H. B. & Phillips, M. (1937). Taenia saginata: Its growth and propagation. Journal of Helminthology 15, 41–8.CrossRefGoogle Scholar
Rausch, R. L. (1964). Studies on the helminth fauna of Alaska. XII. Observations on cestodes of the genus Diplogonoporus Lönnberg, 1892 (Diphyllobothriidae). Canadian Journal of Zoology 42, 1049–69.CrossRefGoogle Scholar
Roberts, L. S. (1961). The influence of population density on patterns and physiology of growth in Hymenolepis diminuta (Cestoda: Cyclophyllidea) in the definitive host. Experimental Parasitology 11, 332–71.CrossRefGoogle ScholarPubMed
Roberts, L. S. & Mong, F.N. (1969). Developmental physiology of cestodes. IV. In vitro development of Hymenolepis diminuta in presence and absence of oxygen. Experimental Parasitology 26, 166–74.CrossRefGoogle ScholarPubMed
Schiller, E. L. (1959). Experimental studies on morphological variation in the cestode genus Hymenolepis. II. Growth, development and reproduction of the strobilate phase of H. nana in different mammalian host species. Experimental Parasitology 8, 215–35.CrossRefGoogle ScholarPubMed
Smyth, J. D. (1971). Development of monozoic forms of Echinococcus granulosus during in vitro culture. International Journal for Parasitology 1, 121–4.CrossRefGoogle ScholarPubMed
Specian, R. D. (1981). Hymenolepis diminuta: paraldehyde fuchsin staining of the rostellar glands following destrobilization and reimplantation. Journal of Parasitology 67, 278–9.CrossRefGoogle ScholarPubMed
Sulgostowska, T. (1974). The development of organ systems in cestodes. II. Histogenesis of the reproductive system in Hymenolepis diminuta. Acta Parasitologica Polonica 22, 179–90.Google Scholar
Thompson, R. C. A. (1977). Growth, segmentation and maturation of the British horse and sheep strains of Echinococcus granulosus in dogs. International Journal for Parasitology 7, 281–5.CrossRefGoogle ScholarPubMed
Tofts, J. & Meerovitch, E. (1974). The effect of farnesyl methyl ether, a mimic of insect juvenile hormone, on Hymenolepis diminuta in vitro. International Journal for Parasitology 4, 211–18.CrossRefGoogle ScholarPubMed
Wardle, R. A. & Green, N. K. (1941). The rate of growth of the tapeworm Diphyllobothrium latum (L.). Canadian Journal of Research (D) 19, 245–51.Google Scholar