Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T01:02:21.018Z Has data issue: false hasContentIssue false

Isoenzyme characterization of trypanosomes of the subgenus Herpetosoma

Published online by Cambridge University Press:  06 April 2009

H. A. Mohamed
Affiliation:
Department of Biological Sciences, University of Salford, Salford M5 4WT
D. H. Molyneux
Affiliation:
Department of Biological Sciences, University of Salford, Salford M5 4WT
C. M. Scott
Affiliation:
Department of Medical Protozoology, London School of Hygiene and Tropical Medicine, Winches Farm Field Station, 395 Hatfield Road, St Albans

Summary

Isoenzyme analysis was used to characterize 6 species of trypanosomes of the subgenus Herpetosoma using 13 different enzyme systems. The species studied were Trypanosoma lewisi, T. musculi, T. grosi, T. microti, T. evotomys and T. nabiasi which cannot be distinguished on morphological grounds. Extracts for thin-layer starch-gel electrophoresis were prepared from cultures of insect forms in either Schneider's Drosophila or Grace's insect tissue culture media with foetal calf serum or a nutrient agar medium. Extracts of T. lewisi and T. musculi bloodstream forms were also run for comparison. All parasites gave distinct patterns which enabled them to be differentiated on one or more enzyme systems. Two types of computer analysis were used to group the parasites; using these techniques the murine parasites T. lewisi, T. musculi and T. grosi fell into one broad group, and T. microti and T. evotomys of microtine rodents formed another. These findings are in accord with earlier observations on the behavioural characteristics of these parasites in their mammalian host and their vector (fleas). The clear differences observed provide the basis for the application of other biochemical and immunological techniques for differentiation within this subgenus of trypanosomes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Taqi, M. & Evans, D. A. (1978). Characterization of Leishmania spp. from Kuwait by isoenzyme electrophoresis. Transactions of the Royal Society of Tropical Medicine and Hygiene 72, 5665.CrossRefGoogle ScholarPubMed
Anez, N. (1982). Studies on Trypanosoma rangeli Tejera, 1920. IV. A reconsideration of its systematic position. Memorias Instituto Oswaldo Cruz, Rio de Janeiro 77, 405–15.Google Scholar
Bagster, I. A. & Parr, C. W. (1973). Trypanosome identification by electrophoresis of soluble enzymes. Nature, London 244, 364–6.Google Scholar
Baker, J. R., Miles, M. A., Godfrey, D. G & Barrett, T. V. (1978). Biochemical characterization of some species of Trypanosoma (Schizotrypanum) from bats (Microchiroptera). American Journal of Tropical Medicine and Hygiene 27, 483–91.Google Scholar
Carter, R. & McGregor, I. A. (1973). Enzyme variation in Plasmodium falciparum in the Gambia. Transactions of the Royal Society of Tropical Medicine and Hygiene 67, 830–7.Google Scholar
Chance, M. L. & Walton, B. C. (1982). Biochemical characterization of Leishmania. Proceedings of a Workshop held at the Pan American Health Organisation, Washington DC. UNDP/World Bank/WHO, Geneva.Google Scholar
Commission on Biochemical Nomenclature. (1973). Enzyme nomenclature: Recommendations (1972) of the International Union of Pure and Applied Chemistry and International Union of Biochemistry, 3rd Edn. p. 443. Amsterdam and New York: Elsevier Publishing Co. Inc.Google Scholar
Davis, B. S. (1952). Studies on the trypanosomes of some California mammals. University of California Publication – Zoology 57, 145250.Google Scholar
Ebert, F. (1983). Comparison of isoenzymes of some species of the subgenus Schizotrypanum from bats by isoelectricfocusing. Tropenmedizin und Parasitologie 34, 93–7.Google Scholar
Farris, J. S. (1970). Methods for computing Wagner trees. Systematic Zoology 19, 8392.Google Scholar
Gibson, W. C., Marshall, T. F. de C. & Godfrey, D. G. (1980). Numerical analysis of enzyme polymorphism: a new approach to the epidemiology and taxonomy of trypanosomes of the subgenus Trypanozoon. Advances in Parasitology 18, 175246.Google Scholar
Gibson, W. C., Mehlitz, D., Lanham, S. M. & Godfrey, D. G. (1978). The identification of Trypanosoma brucei gambiense in Liberian pigs and dogs by isoenzymes and by resistances to human plasma. Tropenmedizin und Parasitologie 29, 335–45.Google ScholarPubMed
Gibson, W. C. & Miles, M. A. (1985). Application of new technologies to epidemiology. British Medical Bulletin 41, 115–21.Google Scholar
Godfrey, D. G. (1979). The zymodemes of trypanosomes. In Symposia of the British Society for Parasitology 17, 3153. Oxford: Blackwell Scientific Publications.Google Scholar
Godfrey, D. G. (1984). Molecular biochemical characterization of human parasites. Recent Advances in Tropical Medicine 1, 289319.Google Scholar
Hoare, C. A. (1972). The Trypanosomes of Mammals. A Zoological Monograph. Oxford and Edinburgh: Blackwell.Google Scholar
Hommel, M. & Miltgen, G. (1974). Adaptation de deux espèces d'Herpetosoma (Trypanosomatidae) à un hôte hétérologue, la souris. Protistologica 9, 1720.Google Scholar
Kidd, K. K. & Sgaramella-Zonta, L. A. (1971). Phylogenetic analysis: concepts and methods. American Journal of Human Genetics 23, 235–52.Google Scholar
Kilgour, V. & Godfrey, D. G. (1973). Species characteristic isoenzymes of two animotransferases in trypanosomes. Nature, New Biology 244, 6970.Google Scholar
Kilgour, V., Godfrey, D. G. & Na'isa, B. K. (1975). Isoenzymes of two aminotransferases among Trypanosoma vivax in Nigerian cattle. Annals of Tropical Medicine and Parasitology 69, 329–35.CrossRefGoogle ScholarPubMed
Lanham, S. M. & Godfrey, D. G. (1970). Isolation of salivarian trypanosomes from man and other mammals using DEAE-cellulose. Experimental Parasitology 28, 521–34.Google Scholar
Letch, C. A. (1979). Host-restriction, morphology and isoenzymes among trypanosomes of British freshwater fishes. Parasitology 79, 107–17.Google Scholar
Letch, C. A. & Gibson, W. (1981). Trypanosoma brucei: the peptidases of bloodstream trypanosomes. Experimental Parasitology 52, 8690.CrossRefGoogle ScholarPubMed
Lincicome, D. R. (1958). Growth of Trypanosoma lewisi in the heterologous mouse host. Experimental Parasitology 7, 113.Google Scholar
McMahon-Pratt, D., Bennet, E. & David, J. R. (1982). Monoclonal antibodies that distinguish subspecies of Leishmania braziliensis. Journal of Immunology 129, 926–7.CrossRefGoogle ScholarPubMed
Mehlitz, D., Zillman, U., Scott, C. M. & Godfrey, D. G. (1982). Epidemiological studies on the animal reservoir of Gambiense sleeping sickness. III. Characterization of Trypanosoma stocks by isoenzymes and sensitivity to human serum. Tropenmedizin und Parasitologie 33, 113–18.Google ScholarPubMed
Miles, M. A., Arias, J. R., Valente, S. A. S., Naife, R. D., de Souza, A. A., Povoa, M. M., Lima, J. A. N. & Cedillos, R. A. (1983). Vertebrate hosts and vectors of Trypanosoma rangeli in the Amazon Basin of Brazil. American Journal of Tropical Medicine and Hygiene 32, 1251–9.CrossRefGoogle ScholarPubMed
Miles, M. A., Apt, B. W, Widmer, G., Povoa, M. M. & Schofield, C. J. (1984). Isoenzyme heterogeneity and numerical taxonomy of Trypanosoma cruzi stocks from Chile. Transactions of the Royal Society of Tropical Medicine and Hygiene 78, 526–35.CrossRefGoogle ScholarPubMed
Miles, M. A., Toyé, P. J., Oswald, S. C. & Godfrey, D. G. (1977). The identification of isoenzyme patterns of two distinct strain groups of Trypanosoma cruzi, circulating independently in a rural area of Brazil. Transactions of the Royal Society of Tropical Medicine and Hygiene 71, 217–25.CrossRefGoogle Scholar
Mohamed, H. A. & Molyneux, D. H. (1986). In vitro cultivation of Herpetosoma trypanosomes in insect cell tissue culture media. Parasitology Research (in the Press).Google Scholar
Molyneux, D. H. (1969). The morphology and life-history of Trypanosoma (Herpetosoma) microti of the field vole, Microtus agrestis. Annals of Tropical Medicine and Parasitology 63, 229–44.Google Scholar
Molyneux, D. H. (1970). Developmental patterns in trypanosomes of the subgenus Herpetosoma. Annales de la Société beige Médecine Tropicale 50, 229–38.Google Scholar
Molyneux, D. H. (1976). Biology of trypanosomes of the subgenus Herpetosoma. In Biology of the Kinetoplastida (ed. Lumsden, W. H. R., and Evans, D. A.), pp. 285325. New York and San Francisco: Academic Press.Google Scholar
Musisi, F. L., Kilgour, V., Brown, C. G. D. & Morzaria, P. S. (1981). Preliminary investigations on isoenzyme variants of lymphoblastoid cell lines infected with Theileria species. Research in Veterinary Science 30, 3843.Google Scholar
Pays, E., Dekerck, P., van Assel, S., Babiker, E. A., Le Ray, D., Van Meirvenne, N. & Steinert, M. (1983). Comparative analysis of a Trypanosoma brucei gambiense antigen gene family and its potential use in epidemiology of sleeping sickness. Molecular and Biochemical Parasitology 7, 6374.Google Scholar
Sargeaunt, P. G. & Williams, J. E. (1978). Electrophoretic isoenzyme patterns of Entamoeba histolytica and Entamoeba coli. Transactions of the Royal Society of Tropical Medicine and Hygiene 72, 164–6.CrossRefGoogle ScholarPubMed
Schottelius, J. (1984). Differentiation between Trypanosoma cruzi and Trypanosoma rangeli on the basis of their sialic acid content. Tropenmedizin und Parasitologie 35, 160–2.Google ScholarPubMed
Shirley, M. W., Jeffers, T. K. & Long, P. L. (1983). Studies to determine the taxonomic status of Eimeria mitis, Tyzzer 1929 and E. mivati, Edgar and Seibold 1964. Parasitology 87, 185–98.CrossRefGoogle Scholar
Sokal, R. R. & Sneath, P. H. A. (1963). Principles of Numerical Taxonomy. San Francisco: W. H. Freeman.Google Scholar
Sneath, P. H. A. & Sokal, R. R. (1973) Numerical Taxonomy. The Principles and Practice of Numerical Classification. San Francisco: W. H. Freeman.Google Scholar
Toyé, P. J. (1974). Isoenzyme variation in Stercorarian trypanosomes. Third International Congress of Parasitology, Munich, 3, Abstract Fl (20), 1471.Google Scholar
Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association 58, 236–44.Google Scholar
Wraxall, B. G. D. & Culliford, B. J. (1968). A thin layer starch gel method for enzyme typing of blood stains. Journal of the Forensic Science Society 8, 81–2.CrossRefGoogle Scholar